Corbett Maths video links:

V312

V377

V358

VOLUME is how many cubic units fit **inside** a shape.

For a prism* Volume = Area x length

*a shape that is the same all the way along its length

 $A = \frac{1}{2} \times 4 \times 5 = 10 \text{cm}^2$ $V = A \times L = 10 \times 14 = 140 \text{cm}^3$

So, always start by working out the **area** on front of the shape – this has to be the same all the way along the length (i.e. it has to be a prism).

SURFACE AREA is how many square units fit onto the **outside** of a shape.

It's helpful to think of the net of the shape: the surface area is just the area of all the bits of the net added together.

e.g. A cube of side length 5cm:

Area of one face = $5 \times 5 = 25 \text{cm}^2$

Total surface area = $25 \times 6 = 150 \text{cm}^2$

The Area of a Circle

Error bounds:

3m The len

6m

The lengths have been measured to the nearest metre

What the minimum and maximum values that the base and height could be?

5.5 ≤ base < 6.5m 2.5 ≤ height < 3.5m

What the minimum and maximum values that the perimeter could be?

16m ≤ perimeter < 20m

What the minimum and maximum values that the area could be? $13.75\text{m}^2 \le \text{area} < 22.75\text{m}^2$

Metric conversions:

Translation:

To translate means to move a shape. The shape does not change size or orientation.

V325

Column Vector:

In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)

 $\binom{2}{3}$ means '2 right, 3 up'

 $\binom{-1}{-5}$ means '1 left, 5 down'

Rotation: v275

The size does not change, but the shape is turned around a point. (Use tracing paper).

Rotate the triangle 90° anti-clockwise about (0,1).

Enlargement:

The shape will get **bigger** or **smaller**. Multiply each side by the **scale factor**.

Scale Factor = 3 means '3 times larger = multiply by 3'

Scale Factor = ½ means 'half the size = divide by 2'

V107 V108

Negative Scale Factor Enlargements will look like they have been rotated.

SF = -2 will be rotated. & also twice as big. Enlarge ABC by scale factor -2, centre (1,1)

Perpendicular Bisector:

Cuts a line in half and at right angles.

Reflection:

The size does not change, but the shape is 'flipped' like in a mirror.

Line x=? is a vertical line. Line y=? is a horizontal line. Line y=x is a diagonal line.

V272 V273 V274

Reflect shape C in the line y=x

Angle Bisector:

Cuts the angle in half.

LOCI: A locus is a path of points that follow a rule.

Points more than 2cm from A

Quadratic: V325

A quadratic expression is of the form $ax^2 + bx + c$ where a, b and c are numbers, $a \neq 0$

Examples of quadratic expressions: x^2 or $8x^2 - 3x + 7$

Factorising Quadratics: V118 V119

When a quadratic expression is in the form $x^2 + bx + c$ find the 2 numbers that add to give b & multiply to give c. e.g. $x^2 + 7x + 10 = (x+5)(x+2)$

(because 5 and 2 add to give 7 and multiply to give 10)

Difference of Two Squares V120

An expression of the form a²-b² can be factorised to give (a+b)(a-b).

e.g. $x^2 - 25 = (x+5)(x-5)$ or $16x^2 - 81 = (4x+9)(4x-9)$

Solving Quadratics (ax² = b)

Isolate the x² term and square root both sides.

e.g. $2x^2 = 98$ Remember there will be a positive and a negative solution. $x^2 = 49$

 $x = \pm 7$

Solving Quadratics $(ax^2 + bx = 0)$

Factorise and then solve = 0

e.g. $x^2 - 3x = 0$

Solve $x^2 + 3x - 10 = 0$ e.g. x(x-3) = 0Factorise: (x+5)(x-2) = 0x = -5 or x = 2

x = 0 or x = 3

Simultaneous Equations:

A set of two or more equations, each involving two or more variables (letters).

The solutions to simultaneous equations satisfy both/all of the equations.

e.g. 2x + y = 7

V295 V296 V297

V266

3x - y = 8

x=3, y=1

Factorising Quadratics when a ≠ 1 V266

When a quadratic is in the form $ax^2 + bx + c$

- 1. Multiply a by c = ac
- 2. Find two numbers that add to give b and multiply to give ac.
- 3. Re-write the quadratic, replacing bx with the two numbers you found.
- 4. Factorise in pairs you should get the same bracket twice
- 5. Write your two brackets one will be the repeated bracket, the other will be made of the factors outside each of the two brackets.

Completing the Square V267a

A quadratic in the form $ax^2 + bx + c$ can be written in the form $(x + p)^2 + q$

- 1. Write a set of brackets with x in and half the value of b.
- 2. Square the bracket.
- 3. Subtract (b/2)² and add c.
- 4. Simplify the expression.

Solving Quadratics using the Quadratic Formula: <u>V267</u>

A quadratic in the form $ax^2 + bx + c$ can be solved using the formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Use the formula if the quadratic does not factorise easily.

Inequality symbols: V176 V177 V178 V179

x>2 means x is greater than 2 x<3 means x is less than 3

x≥1 means x is greater than or equal to 1 x≤6 means x is less than or equal to 6

Inequalities can be shown on a number line.

Open circles are used for numbers that are less than or greater than (< or >)

Closed circles are used for numbers that are less than or equal or greater than or

equal $(\leq \text{ or } \geq)$

TECHNICAL LANGUAGE:

P("something") means probability of "something" happening

"Mutually exclusive" means that if one thing happens, the other cannot. E.g. being alive and dead are mutually exclusive states!

"Bias" = unfairness. It would be biased to roll a die that has 2 sixes on it and no zeroes in a normal dice game.

Sometimes bias is difficult to spot in experiments. If you flip a coin 100 times, you expect 50 heads and 50 tails, but does that mean your coin is biased if you get 60:40? What about 90:10?? What about 99:1????

COMBINING PROBABILITIES:

If you want to find the probability of 2 things happening, MULTIPLY the individual probabilities.

One of the reasons why fractions are convenient for probability is That they are so easy to multiply; 1/2 x 1/8 = 5/16 Multiply numerators, multiply denominators

If outcomes A and B are mutually exclusive, P(A) + P(B) = 1 or 1-P(A) = P(B)

E.g. If there is no draw allowed, and P(win) = 0.7, B(lose) must be 0.3

Remember to simplify whenever possible

Example:

P(win 2) = 2/5

 $P(\text{win both}) = 2/5 \times 3/10 = 6/50 \neq 3/25$

You can use two-way tables to help solve probability problems:

	France	Holland	Elsewhere	Total	
June	6	18	5	29	
July	10	19	2	31	
August	15	15	10	40	3
Total	31	52	17	100	

What is the probability that a person selected at random:

1. Went to Holland on holiday?	52/100
2. Went on holiday in July?	31/100
3. Went to France in August?	15/100
4. Did not visit either France or Holland?	17/100
5. Went on holiday in June?	29/100

The LANGUAGE of probability:

P("something") means probability of "something" happening

Eg. When tossing a coin P(heads) = 0.5 or 1/2

P(tails) = 0.5 or 1/2

P(heads or tails) = 1 (certain)

P(coin flying off into outer space) = 0 (impossible)

It's often easiest to write probabilities as fractions*, especially if you want to combine probabilities in tree diagrams...

Sample Space Diagrams:

Often used to find all the possible combinations of 2 events being combined:

VENN DIAGRAMS

$$P(A \cap B) = \frac{19}{20}$$

20 people chose A, and 19 chose B.

$$P(AUB) = \frac{19}{20} \left[\begin{array}{c} 20 \\ 9 \\ 1 \end{array} \right]_{1}^{A}$$

1 person opts out of choosing either A or B.