Quadratic: V325

A quadratic expression is of the form $ax^2 + bx + c$ where a, b and c are numbers, $a \neq 0$ Examples of quadratic expressions: x^2 or $8x^2 - 3x + 7$

Factorising Quadratics: V118 V119

When a guadratic expression is in the form $x^2 + bx + c$ find the 2 numbers that add to give b & multiply to give c. e.g. $x^2 + 7x + 10 = (x+5)(x+2)$ (because 5 and 2 add to give 7 and multiply to give 10)

Difference of Two Squares V120

An expression of the form a²-b² can be factorised to give (a+b)(a-b).

e.g. $x^2 - 25 = (x+5)(x-5)$ or $16x^2 - 81 = (4x+9)(4x-9)$

Solving Quadratics $(ax^2 = b)$

Isolate the x² term and square root both sides.

e.g. $2x^2 = 98$ Remember there will be a positive and a negative solution. $x^2 = 49$

x = +7

Solving Quadratics $(ax^2 + bx = 0)$

Factorise and then		<u>V266</u>	
e.g. $x^2 - 3x = 0$	e.g.	Solve	$x^2 + 3x - 10 = 0$
x(x-3) = 0		Factorise: (x+5)(x-2) = 0	
x = 0 or x = 3			x=-5 or x=2

Simultaneous Equations:

A set of two or more equations, each involving two or more variables (letters).

The solutions to simultaneous equations satisfy both/all of the equations. V295 V296 V297

e.g. 2x + y = 7

3x - y = 8

Factorising Quadratics when $a \neq 1$ V266

When a quadratic is in the form $ax^2 + bx + c$

- 1. Multiply a by c = ac
- 2. Find two numbers that add to give b and multiply to give ac.
- 3. Re-write the quadratic, replacing bx with the two numbers you found.
- 4. Factorise in pairs you should get the same bracket twice
- 5. Write your two brackets one will be the repeated bracket, the other will be made of the factors outside each of the two brackets.

Completing the Square V267a V371

A guadratic in the form $ax^2 + bx + c$ can be written in the form $(x + p)^2 + q$

- 1. Write a set of brackets with x in and half the value of b.
- 2. Square the bracket.
- 3. Subtract (b/2)² and add c.
- 4. Simplify the expression.

Solving Quadratics using the Quadratic Formula: <u>V267</u>

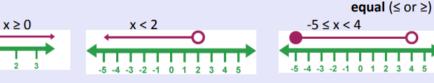
A quadratic in the form $ax^2 + bx + c$ can be solved using the formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Use the formula if the quadratic does not factorise easily.

Inequality symbols:

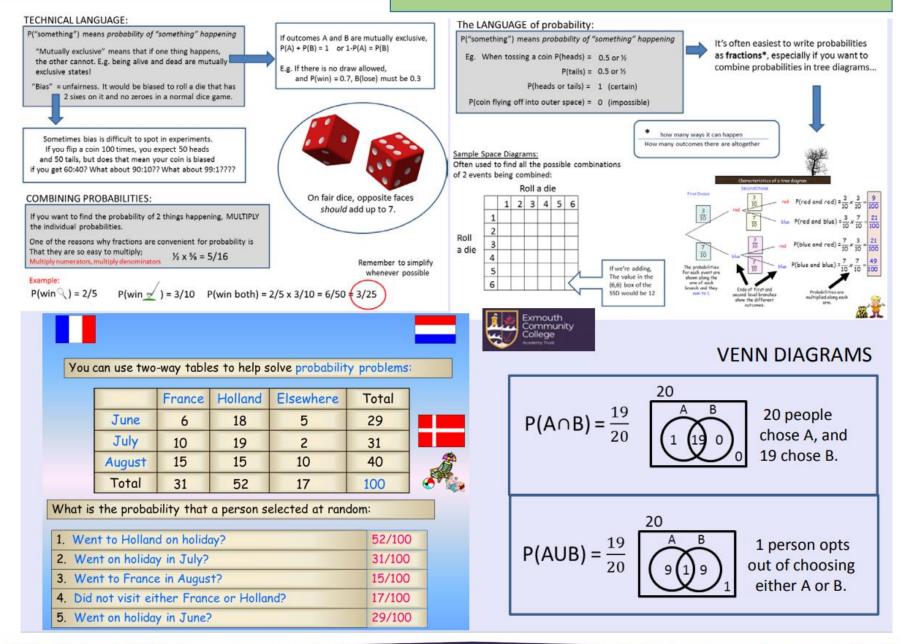
V176 V177 V178 V179


x>2 means x is greater than 2 x<3 means x is less than 3

-2

x≥1 means x is greater than or equal to 1 x≤6 means x is less than or equal to 6

Inequalities can be shown on a number line.


Open circles are used for numbers that are less than or greater than (< or >) Closed circles are used for numbers that are less than or equal or greater than or

HT2

Corbett Maths video links V244 V250 V247

