Co-ordinates

These are given in the form (X,Y). We go along the x axis and up or down the y axis.

Y intercept

This is the point where the line crosses the y axis. On the example the y intercept = +2

Gradient

The steepness of a graph is called the **GRADIENT.** You can find the gradient by:

Squares up or down Squares across

<u>4</u> 1

Gradient + 4

Gradient can be positive (/) or negative (\)

Parallel Lines have the same gradient but a different y intercept. For example a parallel line for the above graph would be y = 4x - 3

Mid points is the point exactly in the middle. To find the coordinates add the x coordinates together and divide by 2 and do the same for the y coordinates.

Y = mx + c Gradient Y intercept

You can use the gradient and y intercept to write an equation for a line. Equation for above line is y = 4x + 2

Table of Values/ Plotting graphs

To find the coordinates of a straight line you can use a table of values.

Firstly create a function machine

Then input numbers from the x axis to find the y axis.

These create coordinates which you can then plot onto the graph and join up with a ruler.

X	0	1	2	3
Υ	2	6	10	14

Distance time graphs

Represents a journey. The vertical axis represents the distance from starting point. The horizontal line represents time taken.

A horizontal line on a distance time graph represents an object at rest.

The gradient of the line represents the speed of the journey

Reflection

Every point in the image is the same distance from the mirror line as the original shape.

The line joining a point on the original shape to the same point on the image is perpendicular to the mirror line.

A reflection creates a congruent image

Rotation

Rotation turns a shape around a fixed point called the **centre of rotation**.

3 parts of a rotation

- the centre of rotation
- the angle of rotation
- the direction of rotation

A Rotation creates a congruent image

Translation

A **translation** moves a shape up, down or from side to side and creates a congruent image.

Column vectors are used to describe translations

 $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$ means translate the shape 4 squares to the right and 3 squares flown

 $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$ means translate the shape 2 squares to the left and 1 square up.

Enlargement

Enlarging a shape changes its size

2 parts of an enlargement

- · the scale factor
- the centre of enlargement
 Fractional SF reduces the shape
 Negative SF inverts the shape

An enlargement creates a similar shape

ABC has been enlarged by sf 3 about O.

Linked Prior Topics

Shapes

Scales

Angles

Straight line graphs

Vocabulary

Object - Starting shape

Image - Created by a transformation

Congruent – 2 shapes are exactly the same

Similar – 2 shapes with the same angles but different length sides

Perpendicular - Forms a 90° angle

Linked Future Topics

Transformation of functions Similar shapes