

Displacement reactions and metal extraction

Reactivity depends on tendency to form metal ion

A and C are Cations (Positive Ions) B and D are Anions (Negative Ions) Reactions of acids

Acid+metal → salt + hydrogen

Acid + insoluble base → salt + water

Magnesium is oxidised

 $Mg \rightarrow Mg^{2+}+2e^{-}$

e.g. 2HCl + Mg -> MgCl₂ +H₂

Hvdrochloric Acid → Chlorides

RP: Preparation of

a dry sample of a

soluble salt

→ Nitrates

→ Sulphates

Acid + alkali → salt + water

HT: OILRIG

HCL

Nitric Acid

HNO.

Sulphuric Acid

H250+

Choose correct acid

Add base to excess

L26 - 36Chemical Changes

H⁺ ions

Acids produce

 $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_{2}O_{(1)}$

Alkalis produce OH-ions

HT: Strong and Weak acids

Concentration of hydrogen ions in mol/dm ³	рН
0.10	1.0
0.010	2.0
0.0010	3.0
0.00010	4.0

Strong and weak acids

Evaporate off water

Neutralisation

..of molten:

Electrolysis

Higher: At the cathode Pb 2+ + 2e - → Pb Higher: At the anode 2Br · → Br₂+ 2e -2Br '- 2e ' → Br,

..to extract aluminium:

.. of solutions:

At the anode: Halide (Gp7) Oxygen

cathode: Least reactive

At the

Metal + Oxygen → Metal Oxide

Metal + acid → Metal salt + Hydrogen

Metal + Water → Metal Hydroxide + hydrogen

Exothermic vs Exothermic

Uses

L37 – 41 Energy Changes Reaction Profiles Bond energy Calculations (HT)

In some reactions more energy comes OUT than goes in

The reactants have more energy than the products.

 e.g. combustion, oxidation, neutralisation.

Exothermic Vs. Endothermic

In some reactions more energy goes IN than comes out.

The products have more energy than the reactants.

e.g. thermal decomposition

Exothermic

Self heating cans, hand warmers

Chemicals react in an exothermic reaction and give OUT heat energy.

Endothermic

Cool packs for sports injuries

Chemicals react in an Endothermic reaction and take IN heat energy – therefore cooling the surroundings.

Exothermic

Products at LOWER energy

than reactants

Endothermic

Products at HIGHER energy than reactants

Activation Energy is the energy needed to start a reaction.

Exothermic

More energy comes OUT making bonds

Endothermic

More energy goes IN breaking bonds