superphosphate). Calcium phosphate (a triple superphosphate). Phosphoric acid Temperature 450°C) and pressure (about 200 The catalyst speeds up both directions of increasing the amount of valuable product. the reaction, therefore not actually atmospheres). | M Exmou | ith Communit | y Collec | ge | | | | | | 10 | | _ | | | | | | |------------------------------------|---|-----------------------|---|---|---------------------------------|---|--|-------------------|-------------------|--|-------------------------|------------------------|-----------------------------|---|---|--| | | | | | | | | 7 | | Alloys | A mixt | tur | - | | - | | tal e.g. Bronze is an alloy of oper and zinc. | | Carracian | The destruction of materials by | An ex | ample of this is ire | | | Corro | sle | _ | ats | Gold jewellery is usually an alloy with silver, copper and zinc. The carat of the jewellery is a measure of the amount of gold in it e.g. 18 carat is 75% gold, 24 carat is 100% gold. | | | | | | | | Corrosion | chemical reaction with substances | in iron o | ron oxide (rust) water needs to be | | | sio | eris | | | Alloys of iron, carbon and other metals. | | | | | | | | | the environmen | t prese | nt for iron to rust. | | | Corrosion and its prevention | mat | | | High carbon steel is strong but brittle. | | | | | | | | | Coatings can be | | ples of this are gre | | | | useful materials | | Steels | | | Lo | w carbon st | eel is sof | ter and easily | shaped. | | Preventing corrosion | added to metals
act as a barrier | to and e | and electroplating. Alun
oxide coating that prote
from further corrosion. | | ects the metal | | are use | | <u></u> | Steel containing chromium and nickel (stainless) are hard and corrosion resistant. Aluminium alloys are low density. | | | | | | | | | | | | | | - <u>e</u> | ll sk | L | \perp | | | | | | | | | Sacrificial corrosion | When a more
reactive metal i
used to coat a le | s with t | neans that the coa
he air and not the
. An example of th | underly | nderlying | | Alloys | | | Cerar
polyme
compo | ers | and | Polymers · | Ther | mosetting | polymers that do not melt when they are heated. | | | reactive metal | - | nise iron.
ions of various | | |] | Using | , m | / L
nateria | | _ | | | Thern | nosoftening | polymers that melt when they a heated. | | NPK
fertilisers | nitrogen,
phosphorous
and potassium | | sining appropriate es of the | | | A | AQA (| GC | SE Us | ing | | | | | Soda-lime glass, made by heating sand, sodiu carbonate and limestone. | | | Fertiliser
examples | Potassium chloride, | Phosphat
treated w | e rock needs to be
rith an acid to | | Production and uses fertilisers | | | ources 2
M ONL | | | | Composite
materials | A mixt
materi
togethe | als put
er for a | Borosilicate glass, made from sand and boron trioxide, melts at higher temperatures than soda-lime glass. | | | | potassium
sulfate and | which is t | a soluble salt
hen used as a
Ammonia can be | | uses o | Т | | | er pro | | | | specific
e.g. str | | MDF wood
resin) | (woodchips, shavings, sawdust and | | | phosphate rock
are obtained | | nanufacture
Im salts and nitric | | of NPK | | | | rtilise | | | | | | Concrete (c | ement, sand and gravel) | | | by mining acid. | | | and muric | | | | | | 1 | Ceramic
material | | Made from clay | | Made by shaping wet clay and then heating in furnace, common examples include pottery a bricks. | | | The Haber process – condition | | | | | | ons and | ns and equilibrium | | | ess | 1 | | | | These factors affect the properties of the | | | Phosphate rock Treatment Products | | | | e reactants side of the equati
re molecules of gas. This mea | | | | | The Haber process | | Polymers | | ners can | polymer. Lo
density (HD | polymer. Low density (LD) polymers and high density (HD) polymers are produced from | | | | The acid is neutralised with ammonia to produce ammonium phosphate, a NPK fertiliser. | | Pressure | if pro | essure is il
fts toward | ncreased, equilibrium
ds the production of | | | Habe | | | make po | olymers | ethene. The
conditions. | ethene. These are formed under different conditions. | | | Nitric acid | | | | | essure ne | eds to | atelier's principle). The
ds to be as high as
ossible. | | | The | | The Haber process | Used to m | nanufactu
nonia | Nitroge | nia is used to produce fertilisers
n + hydroger ammonia | | Sulfuric acid | Calcium phospho
calcium sulfate (| | The forward reaction is exothern Decreasing temperature increas ammonia production at equilibri | | | | ases |] \ | | Raw
materials | Nitrogen ;
while hyd | | air being p | these gases are purified before
assed over an iron catalyst. This is
ted under high temperature (abou | | | ammonia production at equilibrium. The exothermic reaction that occurs releases energy to surrounding, opposing the temperature decreases. Too low though and collisions would be too infrequent to be financially viable. Catalyst natural gas Iron