Types of materials

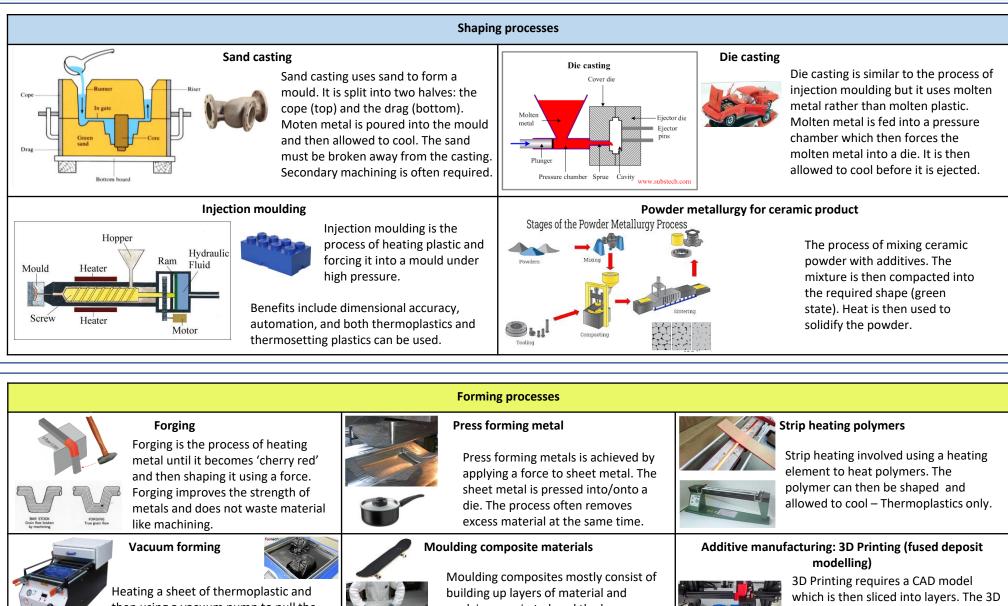
	Metals								
Ferrous Metals	Ferrous metals contain iron. They may have small amounts of other metals or other elements added, to give the required properties. The are also magnetic. They will <i>rust</i> if unprotected.	Iron, carbon steels, high speed steels							
Non-ferrous metals	Non-ferrous metals do not contain iron. Pure metals (have no other metal or element). They are not magnetic.	Copper, brass, bronze, aluminium, zinc, tin, lead, titanium							
Alloys	Metal alloys involve mixing two or more metals and other elements to improve their properties.	Brass, aluminium and titanium alloys.							

	Other engineering materials	
Ceramics	A ceramic is an inorganic non-metallic solid made up of either metal or non- metal compounds that have been shaped and then permanently hardened by heating to high temperatures.	Tungsten carbide, Glass, ceramic bearing material
Composites	Composite material is made from two or more materials with significantly different physical or chemical properties that, when combined, produce a material with characteristics different from the original components.	Glass reinforced plastic, Carbon fibre, Concrete
Smart materials PHOTOCHROMIC LENS	Smart materials are material that respond or adapt to changes in their environment dur to stimuli such as: external stress, moisture, electric or magnetic fields, light, temperature, or chemical compounds	Shape memory alloys, thermochromic pigments, photochromic materials, phosphorescent pigment, Quantum Tunnelling Composite.

Polymers							
Thermoplastics (thermoforms)	Thermoplastics - a polymer which becomes soft when heated and hard when cooled. Thermoplastics can be cooled and heated several times without any change in their chemistry or mechanical properties.	ABS, polyethylene, HIPS, PVC, polycarbonate, polypropylene, nylon, polymethylmethacrylate (PMMA/Acrylic).					
Thermosetting- plastics (thermosets)	Polymer that irreversibly becomes rigid when heated. Cannot be reheated and reshaped, making them harder to recycle.	Polyester resin, urea – formaldehyde, epoxy resin, phenol-formaldehyde.					

	New and emerging materials							
Nano technology	Developing and engineering materials at an atomic level. Allowing for nano particles to be added to fabric or glass. Self-cleaning glass, sta fabrics, graphene.							
Metal foams	Metal foams Think AERO chocolate but in metals. Common in aluminium alloys, allowing for strength but reducing the weight. Metal Foams							
Self-healing materials	ielf-healing materials As the name suggests, these materials 'heal' themselves when they become damaged. They usually contain some from of bacterial which then 'seals' the damage.							
Aramid fibres	A type of aramid fibre that is woven into a textile material and is extremely strong and light weight.	Kevlar						

Knowledge organiser: Topic Area 1: Engineering materials


	Material properties							
Malleability	The ability of a material to permanently deform in all directions without fracturing.	Corrosion Resistance	How well a material (especially a metal) can withstand damage caused by oxidization or other chemical reactions					
Ductility Before necking During necking Load	The ability of a material to deform without fracturing, usually by stretching along its length.	Brittleness	The opposite of malleability - Brittle materials are often those which can also be described as 'hard'. They don't cope well with impacts and tend to shatter.					
Conductivity/Resistivity	The ability of a material to conduct heat or electrical energy. Resistivity – the ability to resit conducting heat or electrical energy.	Machinability	How easily the materials can be cut by means of turning, drilling, milling, filing etc.					
Hardness	Resistance of a material to deformation, indentation, or penetration by means such as abrasion, drilling, impact, scratching.	Elasticity	The ability of a material to return to its original shape after a force has been applied.					

Material characteristics		Testing of materials			
Relative cost	Ease of use	Forms of supply	Destructive testing	This type of testing is uundertaken in order to understand a specimen's performance or material behavior. Those procedures are carried out to the test the specimen to failure.	Tensile testing, hardness testing
Availability	Sustainability	Safety in use	Non- destructive Testing	A testing and analysis technique used by industry to evaluate the properties of a material, component, structure or system for characteristic differences or welding defects and discontinuities without causing damage to the original part.	Conductivity testing, crack testing, ultrasonic testing.

Knowledge organiser: Topic Area 2: Manufacturing processes

	Wasting processes							
Drilling	 Hand tools: Hand drill Power tools: Cordless drill, pedestal/pillar drill. A drill bit (consumable) is used to 'carve' through the material. Swarf (cuttings) is ejected via the flutes. 	Threading	 (holder). Process of The cutting tools r threads. A cutting to lubricate the cu Internal thread taper, bottom 	remove material in the shape of screw or tapping compound (consumable) is used utting of screw threads. ds - Taps come in a various forms such as				
Shearing	 Hand tools: Tin snips, aviation snips. Power tools: Nibblers, bench shears. A pair of sharpened jaws slice through the material similar to how scissors operate. 	Sawing	Power tools: Power	r hacksaw, hacksaw. er hacksaw • (consumable) with 'teeth' is used to				
	ted machines (can be manual or CNC)	Filing	Hand tool: Hand file – many types such as flat, half round, 3					
Milling	Milling machine: Looks very similar to the pillar drill but instead of the chuck and drill bit moving up and down relative to the bed, the chuck/collet of the milling machine remains fixed and the bed is moved in relation to the cutting tool. The bed can be moved in multiple axis. Products can be very complex shapes. A coolant (consumable) is often used to keep materials cool. This prolongs the life of the cutting	Routing CNC routing requires a CAI operate it. The router follo and cuts out two-dimensio materials such as woods, o metals, plastics and foams	D program to ows the program onal shapes from composites,					
Turning	tools. Centre lathe: Turning creates cylindrical products/components. Can be used to create holes, grooves and knurls (think grip pattern on barbells/dumbbells). A coolant (consumable) is often used to keep materials cool. This prolongs the life of the cutting tools.	composites and polymers.		composites and polymers.				

Knowledge organiser: Topic Area 2: Manufacturing processes

then using a vacuum pump to pull the softened polymer over a mould. Moulds must have a draft angle. Moulding composites mostly consist of building up layers of material and applying a resin to bond the layers together. Moulds in the desired shape are used to form the composite.

3D Printing requires a CAD model which is then sliced into layers. The 3D printer then prints the layers to build up the product or component. PLA is commonly used.

Knowledge organiser: Topic Area 2: Manufacturing processes

Joining processes							
Brazing	MIC	6 welding	MAG welding				
Metals must be clifrom contaminant the mating metals applied to it. The tip placed together an filler metal (brass) the joint. The metal allowed to cool.	ts. The join of s has a flux two metals are nd heated. A) is melted into cals are then	Metal inert gas (MIG) has an electrode (filler metal) contained within the welding torch. Welding actually melts the base materials to help join them together. Argon gas shields the weld from oxidising	Metal active gas (MAG) is much the same as MIG welding but instead of using an inert gas, it uses an active gas (commonly CO2). The active gas helps the weld achieve deeper penetration. CO2 is also much cheaper than argon.				
Rivet	ting		Mechanical fastener				
Pop rivets	Cold/hammered rivets	ts Nuts, bolts and screws Self-tappir					
Pop rivets join two pieces of material together by pulling the mandrel through the body of the rivet. The mandrel snaps off and joins the materials. Pop rivets are a good choice when access to the material is limited to one side only.	Rivet and Rivet feed for the rivet and to be deformed my a form of hammering. They require access to both sides of the materials being joined.	Nuts bolts and scre on a screw thread the components. T come in many size different head type as hex, pozi and fla	to join They s and es such not require a pilot hole drilling like bolts do. They create their own screw threads and join materials				

Finishing processes

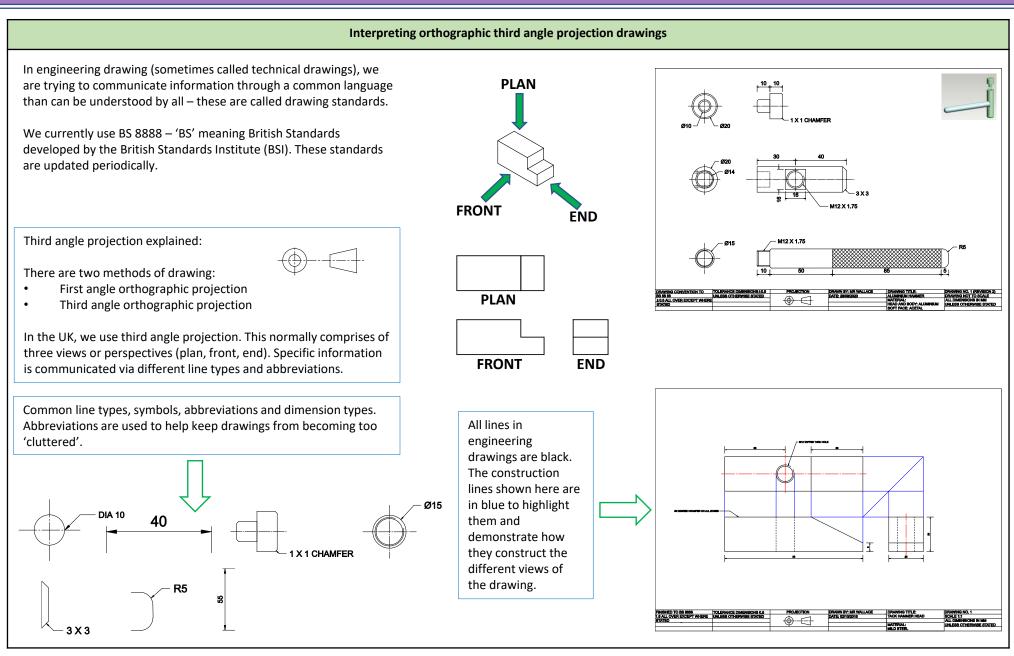
Spray

HAMMERIJE

Using a brush is a very cost-effective way to apply paint. It does not require any specialist equipment such as spray guns, extraction or training of staff. It can however be a slow process. The surface finish is not always perfect.

Brush

Painting


Spray painting is a very efficient way of painting materials and leaves a high-quality surface finish. It can be allied via a aerosol can or a professional spray gun. Training is required and specialist extraction for paint fumes.

Powder coating

A dry coloured powder is applied to metals and woods by spraying the powder over an electrode. This creates an electrostatic charge which then attracts the powder to the grounded part being coated. Powder coating is very durable and cost effective as there is minimal waste due to the electrostatic process.

Knowledge organiser: Topic Area 3: Manufacturing requirements

Influence of the scale of manufacture on the production method						
Scales of manufacture			Jigs, fixtures, templates and moulds (to speed up the manufacturing process)			
One-off (one only) – A bespoke item. Requires highly skilled people. Often a mixture of traditional hand skills and CNC.	Batch production Batch (typically 10s – 1,000s) – Groups of identical items produced simultaneously. Skilled workers and automation are required.	Mass (typically 10,000 – 100,000s) – Often require standardised components and the process is usually highly automated.	A jig both holds the work and guides a tool. A typical example of how a jig might be used is for drilling parts in the same spot continuously and accurately. A fixture is something that holds work in a given position while a manufacturing process takes place. Templates can be used to mark out or help guide a cutting tool JIG FIXTURE Moulds can be positive or negative in shape. They can be used to form material over them or inject/pour molten materials into.			
	Level of automation		Advantages and limitations of CAM			
Level of automation can be broken down into three categories, manual, CAM processes and fully automated robotic control . CAM processes require fewer humans than manual, fully automated robotic control can be ran with one human overseeing whole engineering plants.			Computer aided manufacture has many advantages over other methods of production. They include consistency of quality/accuracy, no requirement for breaks (other than scheduled maintenance), and less injuries to staff in hazardous working conditions. Disadvantages include job losses, high set up costs and costly training of staff.			

Quality							
Reasons for implementing a quality system in engineering							
There are many good reasons for implementing quality systems. These include:							
Early intercept of problems in production Production Reducing waste and associated costs Reducing waste and associated costs Consistency of finished products Consistency of finished products Reduce issues at customer and returns							
Quality assurance is a proactive/preventative approach to ensure quality. Quality control is a reactive approach to check quality.							

Knowledge organiser: Topic Area 4: Developments in engineering manufacture

	Inventory management					
Inventory (often referred to as stock) refers to goods and/or materials held by a business for the purpose of resale or production. Inventory management simply means methods of controlling stock through the manufacturing process or release of materials/products.						
Some businesses are manufacturers only, resellers (retailers) only, or can b	e both – All types of businesses will employ some form of inventory management.					
Just in time (JIT) manufacturing	Material requirements planning (MRP)					
JIT production is a method of organising the manufacture of products so they are made to order – they arrive 'just in time' for the assembly or manufacture of a product.	Material requirements planning (MRP) is a system for calculating the materials and components needed to manufacture a product. It consists of three primary steps:					
 Benefits include: Smaller manufacturing facilities due to no need to store materials/products. Products/components never become obsolete 	 Taking inventory of the materials and components in stock Identifying which additional ones are needed Scheduling their production or purchase MRP is done primarily through specialised software. 					
No risk of unsold stock	Benefits include:					
Disadvantages:	 Inventory is available right when it's needed and at the lowest possible cost. 					
Reliance on transport networks	 Improves the efficiency, flexibility and profitability of manufacturing operations. 					
Reliance on reliable suppliers	 It can make factory workers more productive, improve product quality and minimise material and labour costs. helps manufacturers respond more quickly to increased demand for their products and avoid production delays. 					
Suppliers Inventory Manager Customer Contacts Suppliers places order	Disadvantages:					
Production Line Customer Gets Product	 Software can be expensive Cost of training staff Still room for human error which can have huge cost implications. 					

Knowledge organiser: Topic Area 4: Developments in engineering manufacture

Lean manufacturing - The seven categories of waste						
Lean manufacturing is a production method which is aimed at reducing times within the production system as well as response times from suppliers and customers.						
Transportation	Inventory	Movement				
Transportation is the process of moving something from one place to another. It does not add any value to the customer, so it should be minimised as much as possible.	This is the waste that is associated with unprocessed inventory. This includes the waste capital tied up in excess stock, wasted transport used moving the inventory, light and heating used to store the excess product.	Movement wastage is any movement made that could have been used for another purpose. Anything from staff bending over to pick something up to CNC machines running inefficient programs.				
Waiting	Waiting Over-processing					
This is any form of waiting that must be done by either a member of staff or machinery to complete a task.	Lean manufacturing relies on products delivering value to the customer, but not over-engineering any product.	Over-production is perhaps the most obvious form of manufacturing waste. Not only does it unnecessarily use up raw materials, but also wasted storage and excess capital tied up in unused products.				
	Defects					
Not only does it u	nnecessarily use up raw materials, but also wasted storage and excess capital	tied up in unused products.				

Globalisation Globalisation, is the process of interaction and integration among people, companies, and governments worldwide. Globalisation has accelerated since the 18th century due to advances in transportation and communications technology.		
Selling to as many markets as possible requires materials and products to be transported all over the world via air, sea and land. Globalisation places a huge demand on transportation, and subsequent impact on the environment.	Manufacturing to international standards is vital if you hope to sell your products or materials globally. International standards help ensure that materials and products meet a specification which helps keep customers safe.	Manufacturing and selling goods globally has led to many job opportunities around the world, including developing countries.
Differences in employment conditions	Influence on product cost	Implications for sustainability
Terms and conditions of employment relate to the requirements set out in an employee's contract. These outline the rights for both the employee and the business. Employment terms and conditions of businesses can include rights, responsibilities and duties.	Where in the world a product, material or service is sold, can have a huge impact on the cost. This can range from how much the raw materials cost, to how much the product can be sold for based on the economic standing of the country.	Many manufacturers move their manufacturing facilities to be closer to a source of raw materials. Great care must be taken when doing this so that materials are used in a responsible way such as sourcing timbers from the Forrest Stewardship Council (FSC).

Consideration of economic, social, ethical and environmental implications

We must consider how globalisation can impact the economy of the country we operate from – it can greatly improve developing economies and severely negatively impact others when manufacturing plants move overseas.