Chapter 7: Energy changes # **Knowledge organiser** ### **Energy changes** During a chemical reaction, energy transfers occur. Energy can be transferred: - · to the surroundings exothermic - · from the surroundings endothermic This energy transfer can cause a temperature change. Energy is always conserved in chemical reactions. This means that there is the same amount of energy in the Universe at the start of a chemical reaction as at the end of the chemical reaction. #### The surroundings When chemists say energy is transferred from or to "the surroundings" they mean "everything that isn't the reaction". For example, imagine you have a reaction mixture in a test tube. If you measure the temperature in the test tube using a thermometer, the thermometer is then part of the surroundings. - If the thermometer records an increase in temperature, the reaction in the test tube is exothermic. - If the thermometer records a decrease in temperature, the reaction in the test tube is endothermic. | + | Reaction | Energy transfer | Temperature
change | Example | Everyday use | Bonds | |----------|-------------|-----------------------|---|---|---|---| | | exothermic | to the surroundings | temperature of
the surroundings
increases | oxidation combustion neutralisation | self-heating cans hand warmers | more energy
released when
making bonds than
required to break
bonds | | | endothermic | from the surroundings | temperature of
the surroundings
decreases | thermal decomposition citric acid and sodium hydrogen carbonate | sports injury
packs | less energy released
when making bonds
than required to
break bonds | ### **Reaction profiles** A reaction profile shows whether a reaction is exothermic or endothermic. The activation energy is the minimum amount of energy that particles must have to react when they collide. #### Bonds (HT only) Atoms are held together by strong chemical bonds. In a reaction, those bonds are broken and new ones are made between different atoms. - Breaking a bond requires energy so is endothermic. - Making a bond releases energy so is exothermic. #### Breaking bonds If a lot of energy is released when making the bonds and only a little energy is required to break them, then overall energy is released and the reaction as a whole is exothermic. #### Making bonds If a little energy is released when making the bonds and a lot is required to break them, then overall energy is taken in and the reaction as a whole is endothermic. #### Bond calculations Different bonds require different amounts of energy to be broken (their **bond energies**). To work out the overall energy change of a reaction, you need to: - 1 work out how much energy is required to break all the bonds in the reactants - 2 work out how much energy is released when making all the bonds in the products. overall energy transferred = energy required to break bonds energy required to make bonds - · A positive number means an endothermic reaction. - · A negative number means an exothermic number. #### Chemical cells In a metal displacement reaction, one metal is oxidised – it loses electrons. These electrons are transferred to another metal, which gains the electrons and so is reduced. By using a **chemical cell** to conduct this reaction, the electron's movement generates a current. In the cell shown, the zinc atoms from the electrode lose electrons, turn into ions, and move into the solution. The electrons travel through the circuit to the copper electrode, causing the LED to light up. Once at the copper electrode, a metal ion from the solution will pick the electrons up and become a metal atom. The greater the difference in reactivity between the two metals in the cell, the greater the potential difference produced. #### **Batteries** A **battery** is formed of two or more cells connected in series. - Some batteries are rechargeable. An external electric current is applied, which reverses the reaction. - Some batteries, like alkaline batteries, are not rechargeable because the reaction is not reversible. Once the reactants are used up, the chemical reaction stops and no more potential differences are released. # Hydrogen fuel cells **Fuel cells** use a fuel and oxygen from the air to generate a potential difference. Hydrogen fuel cells generate electricity from hydrogen and oxygen. The overall reaction is: $$2H_{,}(g) + O_{,}(g) \rightarrow 2H_{,}O(l)$$ The hydrogen is oxidised to produce water. There are different types of hydrogen fuel cell. In alkaline fuel cells, the half equations are below: - 2H,(g) + 4OH⁻(aq) → 4H,O(l) + 4e⁻ - O₂(g) + 2H₂O(l) + 4e⁻ → 4OH⁻(aq) ### Advantages - · the only waste is water - do not need to be electrically recharged #### Disadvantages - hydrogen is highly flammable and difficult to store - hydrogen is often produced from nonrenewable resources # Mey terms Make sure you can write a definition for these key terms. activation energy battery bond energy chemical cell combustion endothermic exothermic fuel cell neutralisation oxidation reaction profile rechargeable thermal decomposition