L 11—12 Chemical Calculations Knowledge Organiser

Section 1: Key Terms	
1 Relative atomic mass	Usually expressed as A _r , this is the mass number of an element.
2 Relative formula mass	Usually expressed as M _r , this is the mass number of all the elements in a compound combined.
3 Mole	The relative atomic mass of an element or formula mass of compound in grams.
4 Avogadro constant	The amount of atoms, molecules or ions in 1 mole of a substance. The number is always 6.022x10 ²³ .
5 Limiting reactant	A reactant that stops the reaction from happening as it is all used up.
6 Percentage yield	The actual mass of a product divided by the theoretical yield, times by 100.
7 Atom economy	The relative mass of the product wanted over the rela- tive mass of all the products formed, times by 100.
8 Concentration	The amount of a solute over the amount of solution.
9 Titration	A technique to find out the concentrations of an un- known substance.

Section 4—Equations

Percentage yield = <u>actual mass of product produced</u> x 100% Maximum theoretical mass of product possible							
Percentage atom = economy		relative formula mass of the desired product from equation Sum of the relative formula masses of the reactants from					
	Concentration (g/dm ³) =	<u>amount of solute (g)</u> Volume of solution (dm ³)					

Section 2: Working out relative atomic masds and relative formula mass

You can calculate the relative atomic mass A_r of an element given the percentage abundance of its isotopes, for example, copper has two isotopes,

 63 Cu (abundance = 69%) and 65 Cu (31%).

To work out the relative atomic mass of copper from this data, imagine you had 100copper atoms. 69 copper atoms would have a relative mass of 63, and the other 31 copper atoms would have a mass of 65. then calculate the mean relative mass of these 100 atoms :

 A_r of <u>Cu = (69 x 63) + (31 x 65) = 63.5</u>

X 100%

100

You also need to know how to work out the relative formula mass of more complex ionic compounds such as aluminium sulfate, $Al_2(SO_4)_3$

Aluminium has an A_r of 27, the A_r of sulfur is 32, and the A^r of oxygen is 16. in this case you must multiply any atoms within the brackets by the subscript number after the brackets. This means that the M_r of aluminium sulphate is.

 $(27 \times 2) + (32 \times 3) + (16 \times 12) = 54 + 96 + 192 = 342$

Section 3—Mole calculations				
Moles from masses				
Chemists prefer to use the mole when describing relative numbers of particles (atoms, molecules, or ions) in a certain mass of substance.				
They use the equation:				
Number of moles = <u>mass (g</u>) or <u>mass (g)</u>				
A _r M _r				
Masses form moles				
Sometimes you will have to work out the mass of a substance from a given number of moles.				
By re-arranging:				
Number of moles = <u>mass (g)</u> or <u>mass (g</u>)				
A _r M _r				
You can calculate the mass of a certain number of moles of substance using the equation:				
Mass (g) = number of moles x A _r or number of moles x M _r				

L 11—12 Chemical Calculations Knowledge Organiser

Section 5—Worked Examples

When lead is extracted from its ore, galena, the first stage is the roasting of lead sulphide, PbS, to convert it to lead oxide, PbO. The lead oxide is then reduced to form lead metal. The balanced symbol equation for the first stage, with state symbols is:

 $2Pb(s) + 3O_2(g)$

 $2PbO(s) + 2SO_2(g)$

Calculate the percentage atom economy of this first stage in the process of extracting lead.

 $(A_r values: Pb = 207, S = 32,) = 16)$

Solution

% atom economy =			Relative formula mass of the Desired product from equation ————————————————————————————————————	
		=	M _r (2PbO) ————————————————————————————————————	
		=	2 x (207 + 16) x 100% [2 x (207 + 32)] + [3 x (16 x 2)]	
		=	2 x (207 + 16) 	

446 = -----x 100% (478 + 96)

= 77.7%

Limestone is mainly made of calcium carbonate. In the production of calcium oxide, crushed lumps of limestone are heated in a rotating lime kiln. The calcium carbonate decomposes to make calcium oxide, and carbon dioxide gas is given off. A company processes 200tonnes of limestone a day. It collects 98.0 tonnes of calcium oxide, the useful product. What is the percentage yield of the reaction in the kiln, assuming limestone contains only calcium carbonate? (A_r values: Ca = 40, C = 12, O = 16)

Solution

Calcium carbonate	calcium oxide	+	carbon dioxide
CaCO₃(s)	CaO(s)	+	CO ₂ (g)

Work out the relative formula masses of CaO₃ and CaO:

 M_r of CaCO₃ = 40 + 12 + (16 x 3) = 100

 M_r of CaO = 40 + 165 = 56

So the balanced symbol equation tells you that 100 tonnes of CaCO₃ could make 56 tonnes of CaO, assuming 100% yield.

Therefore 200 tonnes of CaO_3 could make a maximum of (56 x 2) tonnes of CaO = 112tonnes (theoretical yield in this case).

Mass of product produced ---- x 100% So percentage yield = ------Maximum mass of product possible

L 11—12 Chemical Calculations Knowledge Organiser

Section 6—Titration (Required Practical)

A titration is carried out using a number of steps:

1. If the sample is a solid, it is weighed using an accurate balance, and then **dissolved** to make up a known volume of solution (usually 100cm³).

2.A **pipette** is used to measure accurately a volume of this solution - for example, 10cm³. A safety pipette filler is used to draw solution into the pipette. This is emptied into a conical flask.

3.A few drops of an indicator may be added to the conical flask. This will show a change of colour when the titration is complete.

4.A second chemical is placed in a **burette**. This other solution is of a chemical that will react with the synthesised chemical sample in the conical flask. Often the solution in the burette is an acid or alkali, and it must be of a precise, known concentration.

5. The solution from the burette is run into the conical flask. The solution is added one drop at a time, with swirling to mix the solutions as the end-point is approached. Eventually, a colour change shows that the correct amount has been added to react completely with the synthesised chemical in the sample.

6. The volume of solution added from the burette is noted. The titration results can then be used to calculate the amount of the synthesised chemical in the sample, and therefore find its purity.

Apparatus required for titration (from left to right): burette, conical flask, safety pipette filler and pipette.

Section 7—Titration Calculations

You should be able to use titration results to calculate the concentration of an acid or alkali. If several runs have been carried out, any irregular titres should be ignored before calculating the mean titre.

Example

27.5 cm³ of 0.2 mol/dm³ hydrochloric acid is needed to titrate 25.0 cm³ of sodium hydroxide solution. What is the concentration of the sodium hydroxide solution?

Step 1: Convert all volumes to dm³

 $27.5 \text{ cm}^3 = 27.5 \div 1000 = 0.0275 \text{ dm}^3$

 $25.0 \text{ cm}^3 = 25.0 \div 1000 = 0.025 \text{ dm}^3$

Step 2: Calculate the number of moles of the substance where the volume and concentration are known

number of moles = concentration × volume

number of moles of hydrochloric acid = $0.2 \times 0.0275 = 0.0055$ mol (5.5×10^{-3} mol)

Step 3: Calculate the unknown concentration

We can say that 0.0055 mol of acid will react with 0.0055 mol of alkali

concentration of alkali = moles \div volume = 0.0055 \div 0.025 = 0.22 mol/dm³

A guick check

You can check your answer using this guick method (but which misses out the chemical understanding that may attract full marks).

unknown concentration = known concentration × volume of known / volume of unknown

unknown concentration = $0.2 \times \frac{27.5}{25.0}$ = 0.22 mol/dm³

In the example above, this would be: