
YEAR 8 - ALGEBRAIC TECHNIQUES... <u>@whisto_maths</u> Brackets, Equations & Inequalities

3x3+2= || √

10 x 3 + 2 = 32 V

e.g. area of a rectangle $Q = b \times h$

The biggest the value can be is 18

YEAR 8 - ALGEBRAIC TECHNIQUES...

@whisto_maths	Sequences
 <u>CO GOP</u> By the end of this unit you should be able to: Generate a sequence from term to term or position to term rules Recognise arithmetic sequences and find the nth term Recognise geometric sequences and 	ig is located een terms increases or decreases (+ or -) by a constant value each time vetween terms increases or decreases in different amounts, or by x or ÷
Linear and Non Linear Sequences Linear Sequences – increase by addition or subtraction and the same amount each time Non-inear Sequences – do not increase by a constant amount – quadratic, geometric and Fibonacci • Do not plot as straight lines when modelled graphically • The differences between terms can be found by addition, subtraction, multiplication or division Fibonacci Sequence – look out for this type of sequence 0 2 3 5 8 Each term is the sum of the previous two terms Each term is the sum of the previous two terms Sequences from algebraic rules This is substitution! 3n ² + 7	Sequence in a table and graphically Position: the place in the sequence Position: the place in the sequence The term in position 3 has 7 squares" Term: the number of variable (the number of squares in each image) <u>A a table</u> Position 1 2 3 <u>Term 3 5 7</u> <u>Craphically</u> <u>Because the terms increase by the same addition each time this</u> <u>Position</u> <u>is inear</u> – as seen in the graph
This will be linear - note the single power of n The values increase at a power for n constant rate 2n - 5 Substitute the number of the term you are looking for in place of 'n' eg pt term = $2(1) - 5 = -3$ 2^{mt} term = $2(2) - 5 = -1$ 100^{th} term = $2(100) - 5 = 195$ <u>Checking for a term in a sequence</u> is 201 in the sequence $3n - 4$? Claebraic rule Solving this will find the position of the term in the sequence. ONLY an integer solution can be in the sequence.	$(U_{1}, b_{1}, b_{1}, b_{1}, b_{2}, b_{1}, b_{2}, b_{2}, b_{2}, b_{1}, b_{2}, b_{2}, b_{1}, b_{1},$
H Finding the algebraic rule This is the 4 \longrightarrow 4, 8, 12, 16, 20 4n $\downarrow \downarrow \downarrow$ 7, 11, 15, 19, 22 \longleftarrow afference – but is the original second	3 more than difference between the terms original and new sequence

YEAR 8 - ALGEBRAIC TECHNIQUES...

le alia a

@whisto_maths	indices
 By the end of this unit you should be able to: Odd/ Subtract expressions with indices Multiply expressions with indices Multiply expressions with indices 	used to multiply a variable
1 Addition/ Subtraction with indices	
Coefficient Power $5x^2 + 4x^4$ Term Term Each square represents x^2 and each cube represents x^4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Only similar terms can be simplified If they have different powers, they are unlike terms $5x^2 + 2x^2 \longrightarrow 7x^2$ $5x^2 + 6x^4 - 3x^2 + x^4 \longrightarrow 7x^2$	$ \begin{array}{c} 2b^{4} \times 3b^{2} \\ \equiv 2 \times b \times b \times b \times b \times 3 \times b \times b \\ \equiv 2 \times 3 \times b \\ \equiv 6 b^{6} \end{array} $ There are often misconceptions with this calculation but break down the powers $ \begin{array}{c} \hline \underline{\text{Oddition/ Subtraction laws for indices}} \\ 3^{5} \times 3^{2} & \longrightarrow 3^{7} \end{array} $
 Divide expressions with indices	$= (3 \times 3 \times 3 \times 3 \times 3) \times (3 \times 3)$ The base number is all the same so the terms
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Can be simplified
$36 \xrightarrow{3} \cancel{3} \times \cancel{3} \times \cancel{3} \times \cancel{3} \xrightarrow{3} 3$	$a^{m} X a^{n} = a^{m+n}$
$\frac{5 a^3 b^2}{15 a b^6} \rightarrow \frac{5 x a x a x a x b x b}{3 x 5 x a x b x b x b x b x b x b} \rightarrow \frac{a^2}{3b}$ Cross cancelling factors shows cancels the expression	
$\frac{23 \text{ a}^7 \text{ y}^2}{5 \text{ d} \text{ b}^6}$ This expression cannot be divided (cancelled down) because there are no common factors or similar terms	Subtraction law for indices $a^{m} \div a^{n} = a^{m-n}$

YEAR & - DEVELOPING NUMBER Fractions & Percentages @whisto maths

Keywords What do I need to be able Percent parts per 100 - written using the / symbol to do? Decimal: a number in our base 10 number system. Numbers to the right of the decimal place are called decimals. Bu the end of this unit you should be able to: Fraction: a fraction represents how many parts of a whole value you have. Convert between FDP less than and Equivalent: of equal value. more than 100. Reduce: to make smaller in value. Increase or decrease using multipliers. Growth: to increase / to arow. Express an amount as a percentage. Integer: whole number, can be positive, negative or zero. Find percentage change. Invest: use money with the goal of it increasing in value over time (usually in a bank). _____ ___ Fraction/Percentage of amount Convert FDP R R 70 out of 100 70 hundredths This also 70 Find $\frac{3}{5}$ of £60 ER ER ER ER ER squares = 70% means 100 70 "hundredths" 70 - 100 = 7 "tenths" Using a Remember 0.7 Remember calculator Be careful of recurring decimals $10\% \text{ of } \pounds 60 = \pounds 6$ $\frac{3}{1} = 60 \times = 0.6$ <u>3</u> = 60% = 0.33333333 50% of £60 = £30 e.g 11 60% of £60 = 0.3 60% of £60 = £36 11 SI D Convert to a decimal = 0.6 x 60 The dot above the 3 11 This will give you the answer × 100 converts = £.36 in the simplest form to a percentage Percentage decrease: Multipliers Percentage increase: Multipliers Convert FDP < and > 100% 100% 12% 100% 40 hundredths 100 hundredths 4 tenths 10 tenths 40% 100% Decrease by 58% Increase by 12% 140 hundredths 14 tenths 100%+40% |00|' - 58|' = 42|'140% |00'/.+|2'/.=|12'/.Multiplier Multiplier 1+0.40 More than 100 - 0.58 = 0.42 4 Less than |00+0|2=|12= 140 ii Express as a 🛛 - Calculator Express as a / - Non-calculator Percent – per hundred Ш This means that 70 per every 100 7 per every 10 are orange Rosie 70% are orange 70. <u>7</u>. 43.3333.. 100 10 13. 30 43% 30 54 per every 100 shaded 27 per every 50 shaded 54% 54 <u>27 .</u> This the same as ш 100 Can't use equivalence 50 13 - 30 Decimal percentages easily to find 'per Ш are still a percentage Denominator 100 Equivalent fractions hundre.d Percentage change Choose appropriate method bought a house for £180,000, bought a phone for £200. later sold it for £216,000. Q year later sold it for £ 1,25. The language and wording of 100% the question is the key 100% **All** values of change £180,000 compare to the £200 ORIGINOL value f 125 Percentage profit Have you represented the question in a Percentage loss ★<u>36000</u> × 100 =20%

Money made (profit value)

180000

bar model?

Can you use a calculator?

Difference in value ____ × 100

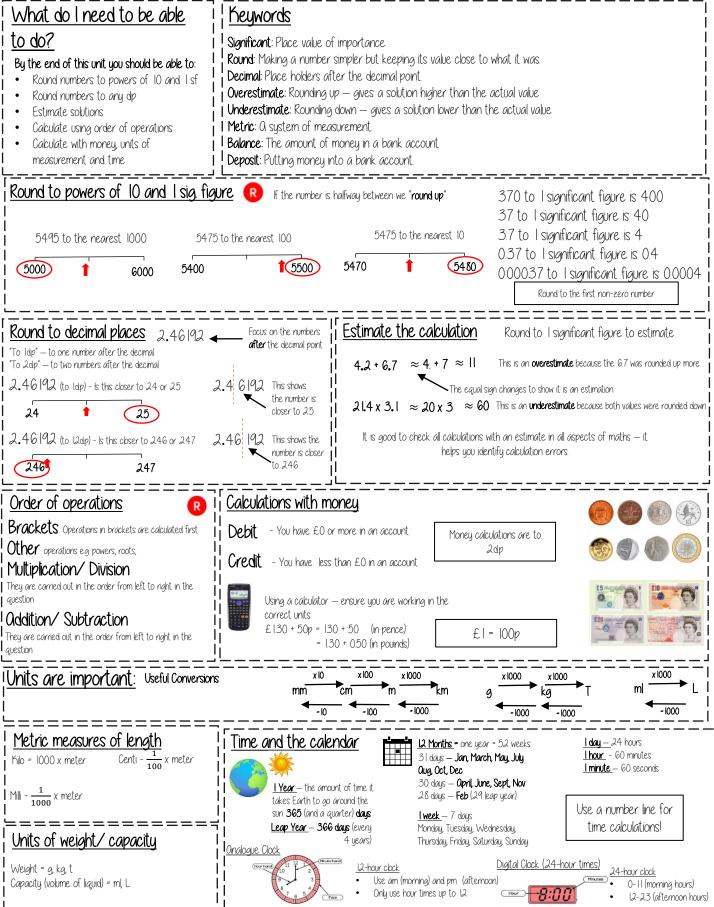
Original value

75

200

× 100 = 37.5%

YEAR 8 - DEVELOPING NUMBER...


Standard Form

ewnisto_math	<u> </u>										
What do I need to be able			Keywords								
to do? By the end of this unit you should be able to: • Write numbers in standard form and as ordinary numbers • Order numbers in standard form • Add/ Subtract with standard form • Multiply/ Divide with standard form • Use a calculator with standard form				Standard (index) Form: A system of writing very big or very small numbers Commutative: an operation is commutative if changing the order does not change the result. Base: The number that gets multiplied by a power Power: The exponent — or the number that tells you how many times to use the number in multiplication Exponent: The power — or the number that tells you how many times to use the number in multiplication Indices: The power or the exponent. Negative: A value below zero.							
Positive powers o	<u>f 10</u>		<u> </u>	<u>Standard form with numbers > </u>		I Negative powers of 10					
billion				Ony number between 1 and A X less than 10	10 n Ony integer	0.00 $ 1 \times \frac{1}{1000}$	10 0		1 10)-	1 100	1 1000
Subtraction rule for	r indices 10ª	+ 10 ^b = 10a-b		 <u>Example</u>	<u>Non-example</u>	 x 10 ⁻³	0	10 • 0		0	
Numbers between 0 and 1			י ו ר	3.2 x 10 ⁴ = 3.2 x 10 x 10 x 10 x 11 - 32000	$\begin{array}{c} (0.8) \times 10^{-4} \\ 5.3 \times 10^{-7} \end{array}$	the p	value to power 0 ys = 1		Negative powers do not indicate negative solutio		1
$\begin{array}{c c} 0.054 & 1 \\ = 5.4 \times 10^{-2} & \\ \hline 0 \\ \end{array}$	 1/10 ↓0⁻¹ ↓0 	$ \frac{1}{100} \frac{1}{1000} $ $ \frac{10^{-2}}{10^{-3}} $ $ \frac{10^{-3}}{1000} $	- -	0rder numbers i 6.4 x 10-2 2	n standard form	10 ² 10 ¹			t the powe		10-4
Q negative power answer — it means		*	 	ĺ	240 I	0.13		Use a p		e = > or < thar e grid to comp ering	
Mental calculation	_		(7)x	 ∣ ∣0⁵x③	Addition and Subt	raction	•	onvert into oro ard from at th		bers first and	back to
$= 6.4 \times 10^{2} \times 10^{3}$ $= 6.4 \times 10^{5}$ Use addition for indices rule $= 2.$ $(2 \times 10^{3}) + 4$ Divide the values		24 x .4 x l(10^5 Not in Standard Form $0^1 \times 10^5$ Use addition for	= 600000 + 800000 = 1400000 = 1.4 x 10 ⁵ More robust method	6 x 10 ⁵		105 This is not the final answer	$\frac{\text{Method } 2}{= (6 + 8) \times 10^5}$ = 14 × 10 ⁵ = 1.4 × 10 ¹ × 10 ⁵ - 1.4 × 10⁵			
		between 1 and	► A >	< 10 n Cony integer	Less room for misconcepi Easier to do calculations negative indices Can use for different pov	with			Only works if the powers are the same		
$\frac{1.5 \times 10^3}{0.3 \times 10^3}$ con loc	n questions ok like this	values for A	and th	ivision you can look at the e powers of 10 as two calculations	Hout 14 and press (10¹⁷) Press (X) hout 39 and press (X10¹⁷) The hout 39 and press (X10¹⁷) The hout 39 and press (X10¹⁷) The	nen press 5 (fo	r the pow	- This a			
$(1.5)x \ 10^5$) \div $(0.3)x$ $(15 \div 0.3)x \ 10^5 \div$	10 ³)			raction laws for indices — For the calculations	Press = To put into standard form a	nd a suitable de	aree. of a		Click co	lculator for vic	leo tutorial
$= 5 \times 10^{2}$		on law for indices A ⁿ = A ^{m + n}	6	Subtraction law for indices A ^m ÷ A ⁿ = A ^{m−n}	Press SHIFT SETUP and th Choose a degree of accurac	nen press 7 for	en press 7 for sci mode. Onswer: 5.5 x 10 ⁸				

YEAR 8 - DEVELOPING NUMBER

@whisto_maths

