

Exothermic and endothermic reactions

Exothermic reactions involve a transfer of energy from the reactants to the surroundings

- As energy is transferred to the surroundings this will show an increase in temperature
- Examples of exothermic reactions include combustion, freezing, and condensing

Endothermic reactions involve a transfer of energy from the surroundings to the reactants

- As energy is taken into the reactants a decrease in temperature will be shown
- Examples of endothermic reactions include thermal decomposition, melting, and boiling

Energy level diagrams

Energy level diagrams show the values of energy between the reactants and the products in a reaction

- If the energy is greater in the reactants than the products then the reaction is exothermic as energy has been given out to the surroundings
- If the energy is lower in the reactants than the products then the reaction is endothermic as energy has been taken in from the surroundings

Bond energies

- Energy must be used to break chemical bonds, meaning that this reaction is endothermic
- Energy is given out when chemical bonds are made, meaning that this reaction is exothermic
- To see if a reaction is endothermic or exothermic, you must find the difference in the energy needed to break and to make the bonds in the reaction
- If the energy needed to break the bonds is less than the energy given out when making the bonds, the reaction is exothermic
- If the energy needed to break the bonds is more than the energy released when making the bonds, the reaction is endothermic

Key Words: chemical bond chemical reaction combustion conserved decomposition fuel endothermic energy level diagram exothermic reactants thermal decomposition