Atoms, elements and compounds

All substances are made of atoms that cannot be chemically broken down. It is the smallest part of an element.

Elements are made of only one type of atom. Each element has its own **symbol**. e.g. Na is sodium.

.....

Compounds contain more than one type of atom.

Naming compounds

Naming compounds-Two elements = ide

e.g. Na₂S Sodium sulphide Two or more including oxygen = **ate**

e.g. Na₂SO₄ = sodium sulphate

a) Atoms of an element

b) Molecules of an element

c) Molecules of a compound

d) Mixture of element and a compound

There are two elements here — Magnesium — MgCl 2 2 x chlorine Magnesium chloride

Small numbers (subscripts) after symbols tell you how many of the element BEFORE the number.

Separating mixtures

L1 - 4 Atomic Structure

Development of Atomic Model

A mixture consists of **two or more** elements or compounds **not** chemically combined together.

This technique separates substances that are insoluble in a solvent from those that are soluble

Crystallisation

This technique separates a soluble substance from a solvent by heating

Example - filtering a mixture of sand, salt and water to collect the sand

Example - crystallisation of sodium chloride from salt solution

Simple distillation

This technique separates a liquid from a mixture by evaporation follow by condensation

Fractional distillation

This technique differs from distillation only in that it separates a mixture into a number of different parts, called fractions.

from sea water

Example - obtaining water

Chromatography This technique separates small amounts of dissolved substances by running a solvent along absorbent paper

Dalton – atoms can't be divided

Bohr - electrons in shells

Chadwick - the neutron

Subatomic Particles

	Mass	Charge	Location
Proton	1	+	nucleus
Neutron	1	0	nucleus
Electron	Very small	-	shells

Number of protons(+) = Number of electrons (-)

Number of neutrons =

mass number – atomic number

Protons = 3 Electrons = 3 Neutrons = 4

Atoms lose or gain electrons to form ions

 $1nm = 1x10^{-9}m$