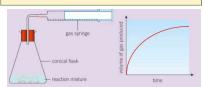
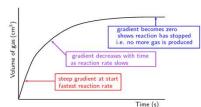
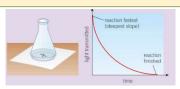

Measuring Rate


To measure the rate of a reaction you can:


- Measure how fast the reactants are used up
- Measure how fast the products are made

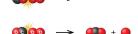
e.g. Measure mass lost due to gas formed

e.g. Measure volume of gas made



Rate = volume of gas ÷ time

cm³/s


e.g. Measure time for insoluble product to form

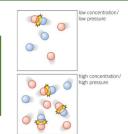
Collision theory

L42 – 51 Rates and Equilibrium

For a reaction to happen reactants must: collide with enough energy (activation energy)

A successful collision is one that leads to a reaction

So to increase the rate of a reaction you must either

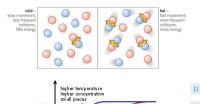

- Increase the frequency of collisions
- Increase the energy of the collisions
- Decrease the energy needed for a collision to be successful

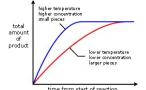
Factors affecting rate

Concentration and Pressure

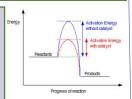
More particles in the same space.

More frequent collisions



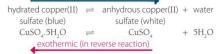

Surface area

Temperature


Particles move faster.
So they collide more frequently.
Particles collide with more energy.
So more of the collisions are successful.

Catalysts

Lower the energy needed for successful collisions. (Activation energy) Not used up. Biological catalysts are called enzymes

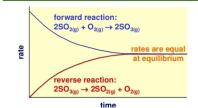

Reversible reactions

Can go in both directions.

$$A + B \rightleftharpoons C + D$$

If a reaction is exothermic in one direction it is endothermic in the other direction.

endothermic (in forward reaction)



In a closed system (where nothing can get in or out) an equilibrium is reached where the rate of reaction is the same in both directions.

At equilibrium:

- Rate of forward reaction = rate of reverse reaction.
- Mount of products and reactants don't change.

