	P14 Light Knowledge	Organiser (Triple	e) PT89.1
Normal	 An imaginary (or real) line drawn perpendicular to a surface/boundary. Used to give a point to measure angles from. 	Colour Light is made up of a spectrum of colours that combine appear as white light Each part of the spectrum has a different wavelength. 	
Law of Reflection	 The Law of Reflection states that the angle of incidence is equal to the angle of reflection i = r Angle of incidence is the angle between the normal and the incident ray The angle of reflection is the angle between the normal and the reflected ray. 		 Red light has the longest wavelength, violet light has the shortest wavelength The colour an object appears depends on the pigments it contains and on the incident wavelengths of light it absorbs and reflects. A yellow banana in white light looks yellow because the pigments on the surface of the skin absorb all wavelengths of light except yellow, which is reflected. In
Diffuse Reflection	 Reflection from a rough surface The light rays are scattered in all different directions so an image isn't formed 	 blue light it would look black as all of the blue light is absorbed White objects don't contain pigments, so all waveler 	 blue light it would look black as all of the blue light is absorbed White objects don't contain pigments, so all wavelengths of light are reflected.
Specular Reflection	 Reflection from a smooth shiny surface The rays of light reflected in one direction and are parallel so an image is formed. No scattering 		•Black objects absorb all wavelengths of visible light
		Filters	 Filters only allow certain wavelengths of light to be transmitted through them. The other wavelengths of visible light are absorbed. E.g. A blue filter absorbs all wavelengths of visible light except for those in the blue part of the spectrum. A red object viewed through the blue filter will look black as the blue filter absorbs the red light being reflected from the back.
Virtual Image	 An image seen in a lens or mirror from which light rays appear to come after being refracted by a lens or reflected by a mirror. Formed by a convex lens if the object is nearer than the principal focus. 		
Real Image	 An image formed by a lens that can be projected onto a screen. Formed by a convex lens if the object is further away than the principal focus 	Translucent	 A material that lets light pass through (transmit), but the light is scattered or refracted inside it. This is due to there being lots of internal boundaries that
Refraction	 The change in direction of waves when they travel across a boundary from one medium to another. When light travels from a less dense medium to a more dense medium, it is refracted towards the normal When light travels from a more dense medium to a less dense medium, it is refracted away from the normal. 	Transparent	 change the direction of the light many times. A material that transmits light completely. The light isn't scattered or refract the light inside the material.

Lens	 Refracts light to form an image A ray diagram is used to show how a lens forms an image Can be convex or concave
Convex lens	 Causes parallel rays of light to converge to a point called the principal focus (or focal point) The focal point (or principal focus) of a convex lens is the point where the rays meet (converge) Also called a converging lens Images formed are either real or virtual A real image will be formed if the object is further away than the focal point A virtual image will be formed if the object is nearer than the focal point. The lens is acting like a magnifying glass.
Concave lens	 Causes parallel rays to diverge (spread out) The focal point of a concave lens is where the rays appear to come from Images formed are always virtual.
Focal length	•The distance from the lens to the focal point
Magnification	 Lenses magnify objects Magnification = image height ÷ object height It is a ratio so it doesn't have any units. Both heights must be measured in the same unit, i.e. both in cm or both in mm.