

What is Computational Thinking?

- It is a thought process for finding ways to solve problems.
- Computational thinking is often associated with computers and coding, but it is a useful approach to problem solving in general.

- Why is it important?
 - The future is likely to be very technologically rich and it is useful for understanding how these technologies will work.

The four corner stones of Computational Thinking

Problems exist in the real world .

For example, How to play this game of Snakes and Ladders?

We can think about this by

- Abstracting.
- Decomposing
- Finding patterns
- Thinking Algorithmically

Abstraction.

Definition.

- Simplifying a solution by filtering out unnecessary detail which is not needed
- A clearer representation, (or idea), of what • we are trying to think about is provided
- Sometimes described as separating the • "signal from the noise" in order to make thinking more efficient and effective

Example

This is an abstract representation of movement in a snakes and ladders game

Decomposition	
 Definition Breaking down a complex problem or system into smaller parts that are more manageable and easier to understand Smaller parts can then be examined and solved, or designed individually, as they are simpler to work with. 	Example A game of Snakes and ladders had different parts that be worked on by different people. The Squares on the board dice ladder Counter Snake

Pattern Matching	
Definition	Example
 Recognising sequences that repeat can help formulate a general solution. 	There is a clear pattern in this sequence of play:
 Playing snakes and ladders follows a clear repeated pattern 	 Blue rolls a dice and gets a 4 and moves to square 2.
 Roll the dice then move the counter that number of places. Repeat this pattern until there is a winner. 	 In square 10, green rolls a dice and gets a 5 and moves to square 16.
	 In square 16, green rolls a dice and gets a 2 and moves to square 18.
	 In square 2, red rolls a dice and gets a 2 and moves to square 13.
	 In square 22, yellow rolls a dice and gets a 5 and moves to square 25.

Algorithmic thinking

- The use of algorithms, or step-bystep sets of instructions, to think about how the problem can be solved.
- There are different methods to do this
 - Drawing flowcharts
 - Writing
 - structured English
 - pseudo code
 - Hierarchical Structure charts

