Expandinq and factorisinq quadratics (double brackets)

Expanding a quadratic is just like multiplying 2-digit numbers - use a multiplication grid, then add your answers:

$$
(x+2)(x+3)=x^{2}+2 x+3 x+6
$$

$$
\begin{gathered}
=x^{2}+5 x+6 \\
1
\end{gathered}
$$

$$
(2+3) \quad(2 \times 3)
$$

It's no coincidence!
Video 14: Expandins quadratics

Factorising a quadratic is the opposite of expanding it - you're putting it back into brackets (if you can). You can still use the grid, but do it in reverse:

$$
x^{2}+7 x+12=(x+3)(x+4)
$$

We know from expanding that the two numbers in my brackets will add to make 7 , and multiply to make 12 , so they must be 3 and 4 $(3 x+4 x=7 x$ and $3 \times 4=12)$

Video 118: Factorising quadratics

Solving quadratics

Quadratic equations are written as equal to y, like so:

$$
y=x^{2}+b x+c
$$

To find the solutions, we make them equal to 0 because the "solutions" are the "x-intercepts", where the graph crosses the x-axis. On the x-axis, the y-value would be zero (because we haven't moved up or down).

$$
x^{2}+7 x+12=0
$$

Then we can factorise to give two answers (one of the brackets must $=0$).

$$
\begin{gathered}
(x+3)(x+4)=0 \\
x+3=0 \text { or } x+4=0 \\
x=-3 \text { or } x=-4
\end{gathered}
$$

Video 266 Solving quadratics by factorising

If we can't factorise (sometimes the numbers don't work), we can use the quadratic formula:

$$
\text { when } x^{2}+b x+c=0, \quad x=\frac{b^{2} \pm \sqrt{4 c}}{2} \quad \frac{\begin{array}{l}
\text { Video 267: Using } \\
\text { nhequadratic } \\
\text { formula }
\end{array}}{\text { and }}
$$

Plottinq a Quadratic Graph

To plot a quadratic, make the expression equal to y, then make a table using different values of x. For example:

$$
y=x^{2}-4 x+5
$$

$$
\text { If } x=1, y=(1)^{2}-(4 \times 1)+5
$$

$$
\text { If } x=1, y=2
$$

Video 264: Plottinga quadraticgranh

Video 265 Shetchinga quadratic graph using

Based on the table above, the coordinates to plot would be: $(0,5)(1,2)(2,1)(3,2)(4,5)$

On the diagram, the solutions are -1 and 2 (circled), because that's where $\mathrm{y}=0$.

Some quadratics (like the one over there) do not cross the x-axis. This means they have no "solutions", because the y value never reaches 0 !

Academy Trust
Video61 Key Facts

Circumference $=$ perimeter of a circle (units)
Area $=$ space inside a 2D shape (units ${ }^{2}$)
Volume $=$ the space inside a 3D shape (units ${ }^{3}$)

Circumference $=$ video 60

Area $=$ Video 40

Circumference and Area of Circles

Circumference $=\pi \times$ diameter $($ or $\mathrm{C}=2 \times \pi \times \mathrm{r})$ Area $=\pi \times$ radius 2
" πr^{2} sounds like area to me, if you need the circumference you just use $\pi d^{\prime \prime}$

Arc length $=$ video 58

Perimeter

Perimeter $\boldsymbol{=}$ arc length $\boldsymbol{+}$ radius $\boldsymbol{+}$ radius

Arc length $=\frac{\theta}{360} \times \pi \times$ diameter
Arc length is a

fraction of the
circumference

Perimeter of semi-circle $=$ video 62

Semicircles and Sectors

Volume and SA of cylinders

Volume $=\pi r^{2} h$

$\mathrm{V}=\pi \times$ radius $^{2} \times$ height

(this is just the area of one of the circles multiplied by how long your cylinder is)

Surface Area

Volume $=$ video 357

SA = 2 circle areas + rectangle area
$\mathrm{SA}=\mathbf{2} \boldsymbol{\pi} \mathrm{r}^{\mathbf{2}}+\boldsymbol{\pi} \boldsymbol{d} \boldsymbol{h}$

Volume and surface area of spheres

Volume of Sphere $=\frac{4}{3} \pi r^{3}$
Surface Area of a Sphere $=4 \pi r^{2}$

Volume of pyramids and cones

Volume of a Pyramid/Cone $=\frac{1}{3} \times$ area of base \times vertical height

Volume of cone $=$ video 359

Volume of Cone
$=\frac{1}{3} \pi r^{2} h$
Volume of pyramid = video 360

Surface Area of a Pyramid = total area of all faces

Area of all 4 triangles + area of the base

Surface Area of a Cone $=\pi \times$ radius \times slant height $=\pi r l$

Multiplying and dividing fractions

To multiply fractions, just multiply the numerators and multiply the denominators (then simplify if you can!)
$\frac{2}{3} \times \frac{3}{5}=\frac{2 \times 3}{3 \times 5}=\frac{6}{15}\left(=\frac{2}{5}\right)$ Multiolving fractions
To divide by a fraction, multiply by the
Dividing reciprocal (flip the numerator and fractions denominator)
$\frac{2}{3} \div \frac{3}{5}=\frac{2}{3} \times \frac{5}{3}=\frac{2 \times 5}{3 \times 3}=\frac{10}{9}$

Reciprocals

When two numbers are reciprocal, it means they multiply to make 1 (they're a bit like "opposites").

So 2 and $1 / 2$ are reciprocal because
$2 \times 1 / 2=1$

Reciprocal fractions are the reverse of each other, as shown:
$\frac{2}{3} \times \frac{3}{2}=\frac{2 \times 3}{3 \times 2}=\frac{6}{6}=1$
The numerator will always match the denominator, and we know that anything divided by itself is 1 !

Combining indices

When multiplying indices with the same base value, add the powers:
$2^{2} \times 2^{3}$
$=2 \times 2 \times 2 \times 2 \times 2$, so
$2^{2} \times 2^{3}$
$=2^{(2+3)}=2^{5}$
When dividing indices with the same base value, subtract the powers:

$$
\begin{aligned}
& 3^{6} \div 3^{2}=\frac{3 \times 3 \times 3 \times 3 \times 3 \times 3}{3 \times 3} \\
& 3^{6} \div 3^{2}=3^{(6-2)}=3^{4}
\end{aligned}
$$

Video 174: Laws of indices (including power of 0)

Negative indices

Raising something to a negative power is the same as raising the reciprocal (see left) to the positive power.

Video 175: Negative indices

Negative power $=\overline{\text { positive power }}$

Power of 0

Anything to the power of 0 is equal to 1 , no matter what it is! We can show this by dividing two identical indices:
$3^{2} \div 3^{2}=3^{(2-2)}$
$3^{2} \div 3^{2}=3^{0}$
Since dividing a value by itself always gives the answer 1, we also know that:
$3^{2} \div 3^{2}=1$, therefore $3^{\mathbf{0}}=\mathbf{1}$
This works for all numbers AND letters!

Standard form

Standard form is a way of writing very large or very small numbers using powers of 10 (multiplying/dividing by 10 until the decimal point is in the right place). The base number must always be between 1 and 10 .

Video 300: Standard form
e.g. 5000000000000000000 can be written as
$5 \times 1000000000000000000$,
which can then be written as
$5 \times \mathbf{1 0}^{18}$
Clearly, the last way is quicker!

SIMILARITY

When shapes look the same but are different sizes, they are
mathematically similar. This means their corresponding ("matching") angles are equal, and their corresponding sides are in the same ratio. One shape is an enlargement of the other.

Congruence \& Similarity definitions
How to find missing sides

VECTORS

Column vectors describe horizontal and vertical "movement", a bit like how co-ordinates describe position. They look similar, but they're arranged in a column (hence the name), as shown below:

Column vectors
x horizontal movement
y vertical movement
To get from A to B, you go 3 right, 2
up:

up:	
$\overrightarrow{A B}$	$\overrightarrow{3}$
Reverse:	
$\underset{(a)}{(-a)}$	$=\left[\begin{array}{l}3 \\ 2 \\ -3 \\ -2\end{array}\right]$

Vectors are labelled with a lower case letter, either bold or underlined.

You can combine vectors by adding their x and y values to give a resultant vector:

$$
a=\binom{3}{2} \quad b=\binom{4}{1} \quad a+b=\binom{3+4}{2+1}\binom{7}{3}
$$

It would look like this:
We do this to move between points that don't have a vector between them - you can only go the way you know!

Vectors can also be multiplied:

Parallel vectors can be represented using the same letter:
Algebraic vectors

CONGRUENCE

When shapes are identical, they are congruent. All corresponding lengths and angles are equal - you could fit one perfectly on top of the other.

You can prove two triangles are congruent by showing that any of these combinations are matching (video here): SSS (all three sides)
SAS (two sides and the angle between them)
ASA (two angles and the side which connects them) AAS (two angles and the side after the second angle) RHS (right angle, hypotenuse and one other side)*

S
*only applies to right-angled triangles

Quadratic functions contain a term in x^{2} but no higher power of x.
Video 266 - https://tinyurl.com/y8san5jm
Cubic functions contain a term in x^{3} bu \dagger no higher power of x. Video 344 - https://tinyurl.com/yamclpto

Cubic functions can contain terms in x^{2}, x, and number terms.

When a cubic function is equal to zero it may have one, two, or three solutions. The solution to a cubic function equalling zero is there the graph crosses the x-axis. The solutions are commonly called roots.
Video 264 - https://tinyurl.com/y7u3d79a
The reciprocal function ($y=-\frac{1}{-}$) of a cubic function has the x - and y-axes as asymptotes to the graph.
Video 346 - https://tinyurl.com/yd8x2uz8
An asymptote is a line that the graph gets closer and closer to, but never actually touches.

Key Points:

https://tinyurl.com/ybfxnjsj

When a graph has x and y in direct proportion, $y=k x$
Video 254 - https://tinyurl.com/htma465
When a graph has x and y inversely proportional to each other, $y=-$
Video 255 - https://tinyurl.com/yb2ur2ya
The graph of two quantities that are inversely proportional is a reciprocal graph.

Simultaneous equations are equations that are both true for a pair of variables (letters).

Video 296 - https://tinyurl.com/y9dbmoee

Simultaneous equations can be solved graphically by plotting both equations on the same coordinate grid. The point at which the lines cross (the point of intersection) has the coordinates that are the solution.

Knowledge Check:

https://tinyurl.com/y9nl3tka

Simultaneous equations can also be solved by the elimination method. To do this, the coefficients of either the x or y terms must be equal (or equal with the opposite sign).
Video 295 - https://tinyurl.com/yadevfgk
Subtract (or add) the two equations to eliminate one of the terms. The remaining term can now be evaluated.

The subject of a formula is the letter on its own side of the equals sign.
Video 7 - https://tinyurl.com/yc6vax5f You can change the subject of a formula using inverse operations (subtract to move an added term to the other side, etc).
Video 8 - https://tinyurl.com/yahmeoyn
An even numberis a multiple of 2.2 m and 2 n are general terms for even numbers where m and n are integers.

An equation has an equals sign (=). You can solve it to find one value of the letter (unknown/variable).

An identity has an equivalent (triple bar) sign (\equiv). The left hand side equals the right hand side for all values of the letter (unknown/variable).

