P7 Radioactivity Knowledge Organiser (H) PT38.2			
Radioactive decay	 The nuclei of atoms contain protons and neutrons Radioactive nuclei are unstable due to the balance of protons and neutrons. They decay (break down) by releasing nuclear radiation to become stable. A random process- we can't predict or change how it happens. 	Alpha radiation	 A helium nucleus. An alpha particle has a mass of 4 and a charge of +2. When a nucleus decays and emits an alpha particle, the mass number of the original nucleus goes down by 4 and the atomic number goes down by 2. The decay equation for alpha decay is Alpha radiation is the most ionising nuclear radiation Stopped by paper/skin (least penetrating) Range of a few cm in air A fast moving electron
Nuclear radiation	 Radiation released when radioactive substances decay There are three kinds: alpha (α), beta (β) and gamma (γ) The three types of nuclear radiation have different properties 		
Discovering the nucleus	 Rutherford fired α particles at gold foil. Most went straight through, some were deflected slightly and a few were deflected by more than 90° Alpha particles are positively charged so something positively charged in the gold atoms must have been deflecting them. Rutherford concluded that most of the mass of an atom must be located in the centre in a positively charged nucleus. The plum pudding model of the atom said that the atom 		 Negatively charged Zero (or negligible) mass When a nucleus decays and emits a beta particle, the mass number stays the same but the proton number increases by 1 as a neutron changes into a proton. The decay equation for beta decay is Beta radiation is less ionising that alpha but more ionising than gamma It is stopped by thin aluminium (second least penetrating) Range of around a metre in air
	was a positively charged sphere with electrons dotted around inside it. Rutherford's discoveries showed that this couldn't be correct.	Gamma radiation	 A wave of electromagnetic radiation No charge as it is a wave No mass as it is a wave When a nucleus decays and emits a gamma wave, the mass number and atomic number stay the same. Gamma radiation is the least ionising nuclear radiation Mostly absorbed by thick lead Unlimited range in air
Atomic number, Z	 The number of protons in the nucleus of an atom. Sometimes called the proton number Usually the smaller number next to the element symbol in the periodic table 		
Mass number, A	 The number of protons + the number of neutrons in the nucleus of an atom Usually the bigger number next to the element symbol in the periodic table No of neutrons in a nucleus = Mass number – Proton number 	Half life	 The average time taken for count rate of a radioactive isotope (or the number of radioactive nuclei) to fall by half. Half life can be found using a decay curve graph . Find half the initial count rate on the y-axis, draw across to the curve then draw down and read the time off the x-axis. Count rate after <i>n</i> half-lives = initial count rate ÷ 2ⁿ
lsotope	 Atoms of the same element with the same number of protons but a different number of neutrons Same atomic number, different mass number 		