Year 9 Python Knowledge Organiser

Programming with Python

<u>File Edit Format Run Options Windows Help</u>

password = input("Enter your password: ")

if password == "abcd1234": print("Access Granted")

else: print("Access Denied")

input("Press ENTER to exit the program")

Python's Development Environment

Called IDLE – Integrated Development Environment

Two Modes:

Interactive Mode lets you see your results as you type them.

Script Mode lets you save your program and run it again later.

Writing error-free code

When writing **programs**, **code** should be as legible and error free as possible. **Debugging** helps keep **code** free of **errors** and documenting helps keep **code** clear enough to read.

Syntax errors

Syntax is the spelling and grammar of a programming language. In programming, a syntax error occurs when:

- there is a **spelling mistake.**
- there is a grammatical mistake.

Data Types

String - holds alphanumeric data as text
Integer - holds whole numbers
Float - holds numbers with a decimal point
Boolean - holds either 'True' or 'False'

int()

Defining Variable Data Types

Python automatically assigns a data type to a variable. You can override this to manually define or change the data type using:

or

ctr()		
sull	,	

float()

<u>Selection</u>

Ln: 1 Col: 0

When designing **programs**, there are often points where a **decision** must be made. This **decision** is known as **selection** and is implemented in **programming** using **IF statements**.

Meaning	Example	Evaluates to		
equal to	7==7	True		
not equal to	6!=7	True		
Greater than	7>6	True		
Less than	5<8	True		
Greater than or equal to	6>=8	False		
Less than or equal to	7<=7	True		
	Meaning equal to not equal to Greater than Less than Greater than or equal to	MeaningExampleequal to7==7not equal to6!=7Greater than7>6Less than5<8		

Procedures

A **procedure** is a small section of a **program** that performs a specific task. **Procedures** can be used repeatedly throughout a **program**. **Procedures** can make **code** shorter, simpler, and easier to write. Writing a **procedure** is extremely simple. Every **procedure** needs:

1. A name 2. The **program** code to perform the task

Variables

A **variable** is a location in **memory** in which you can temporarily store text or numbers. It is used like an empty box or the Memory function on a calculator. You can choose a name for the box (the "**variable name**") and change its contents in your **program.**

Using a Variable (firstname)

print ("What is your name?") firstname = input() print ("Hello,",firstname) Variable

Functions

Functions are special keywords that do a specific job. **Functions** appear in purple.

print() and input() are examples of functions						
print	("What is your name?"					
<pre>firstname = input()</pre>						
print	("Hello,",firstname)					

Adding Comments

Comments are useful to help understand your **code.** They will not affect the way a **program** runs. **Comments** appear in red and have a

preceding # symbol.

#firstname is a variable
print ("What is your name?")
firstname = input()
print ("Hello,",firstname)

Year 9 Python Knowledge Organiser

<u>Iteration</u>

Algorithms consist of steps that are carried out (performed) one after another. Sometimes an algorithm needs to repeat certain steps until told to stop or until a particular condition has been met. *Iteration is the process of repeating steps.*

Iteration allows us to **simplify** our **algorithm** by stating that we will **repeat** certain **steps** until told otherwise. **Iteration** is implemented in **programming** using **FOR** and **WHILE** statements.

There are **two** ways in which **programs** can **iterate** or **'loop'**:

- count-controlled loops
 - Sometimes it is necessary for steps to iterate a specific number of times.
- condition-controlled loops
 - **iteration** continues **while**, or **until**, a **condition** is met.

Each type of **loop** works in a slightly different way and produces different results.

IF Statements

When designing **programs**, there are often points where a **decision** must be made. This **decision** is known as **selection** and is implemented in **programming** using **IF** statements. In **programming**, **selection** is usually represented by the statements **IF** and **ELSE**.

For **selection**, Python uses the statements **if** and **else** (note the lowercase **syntax** that **Python** uses):

Consider the age-related **algorithm** using **Python**. The steps are:

- Ask how old you are
- if you are 70 or older, say "You are aged to perfection!"
- else say "You are a spring chicken!"

The above algorithm would be written in Python (3.x) as:

age = int(input("How old are you?"))

if age >= 70:

print("You are aged to perfection!")

else:

print("You are a spring chicken!")

<u>Arrays</u>

An **array** is a series of **memory** locations – or **'boxes'** – each of which holds a single item of **data**, but with each box sharing the same name. All **data** in an **array** must be of the same **data type**.

Arrays are named like variables. The number in brackets determines how many data items the array can hold. The array score(9) would allow ten data items to be stored.

				sco	scores				
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
3000	2500								
•								A	~

Any **facility** that holds more than one item of **data** is known as a **data structure**. Therefore, an **array** is a **data structure**.

Lists are **data structures** similar to **arrays** that allow **data** of more than one **data type**.

Functions

A **function** is also a small section of a **program** that performs a specific task that can be used repeatedly throughout a **program**, but the task is usually a **calculation**. **Functions** perform the task and return a value to the main **program**.

Every function needs:

- 1. A name
- 2. The values that it needs to use for calculation
- 3. The **program** code to perform the task
- 4. A value to return to the main program