Displacement reactions and metal extraction

Reactivity depends on tendency to form metal ion

A and C are Cations (Positive Ions) B and D are Anions (Negative Ions)

HT: OILRIG

Oxidation Is Loss of electrons Reduction Is Gain of electrons

Metal + Oxygen → Metal Oxide

Metal + Water → Metal Hydroxide + hydrogen

Metal + acid → Metal salt + Hydrogen

Reactions of acids

Acid+metal → salt + hydrogen

Acid + insoluble base → salt + water

Magnesium is oxidised

 $Mg \rightarrow Mg^{2+} + 2e^{-}$

e.g. $2HCl + Mg \rightarrow MgCl_2 + H_2$

Hydrochloric Acid → Chlorides

RP: Preparation of

a dry sample of a

soluble salt

→ Nitrates

→ Sulphates

Acid + alkali → salt + water

HT: OILRIG

HCL

Nitric Acid

HNO2

Sulphuric Acid

H2SO4

Choose correct acid

Add base to excess

L26 - 36Chemical Changes

Neutralisation

Acids produce H⁺ ions Alkalis produce OH-ions

$$H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_{2}O_{(I)}$$

HT: Strong and Weak acids

Concentration of hydrogen ions in mol/dm ³	
0.10	1.0
0.010	2.0
0.0010	3.0
0.00010	4.0

Strong and weak acid:

Evaporate off water

Electrolysis

..of molten:

Higher: At the cathode Pb 2+ + 2e - → Pb Higher: At the anode 2Br - → Br₂ + 2e -2Br -- 2e - → Br₂

..to extract aluminium:

.. of solutions:

At the anode: Halide (Gp7) Oxygen

At the cathode: Least reactive