year 10 - PROPORTION...

@whisto_maths

What do I need to be able to do?
|
| By the end of this unit you should be able to:
1- Odd, Subtract and multiply fractions
1- Find probabilities using likely autcomes
1- Use probability that sums to I

1. Estimate probabilities
2. Use Venn diagrams and frequency trees

- Use sample space diagrams
- Calculate probability for independent events
- Use tree diagrams

Keywords

Event: one or more outcomes from an experiment
I Outcome: the result of an experiment
I Intersection: elements (parts) that are common to both sets
I Union: the combination of elements in two sets.
Expected Vave: the value/ outcome that a prediction would suggest you will get
Universal Set: the set that has all the elements
Systematic: ordering values or outcomes with a strategy and sequence
Product: the answer when two or more values are multiplied together.

add, Subtract and mutiply fractions

Iadtion and Subtraction
$\frac{4}{5}-\frac{2}{3}$
$\frac{12}{15}-\frac{10}{15}=\frac{2}{15}$
Use equivalent fractions to
find a common multipl for
both denominators

Multipication
Multipleation

Likeliness of a probability

The more likely an event the further up the probability it will be in comparison to another event (It will have a probability closer to I)

Probabiliy is ahnaus a value between 0 and $I \quad R$
The probability of geting a ble ball is $\frac{1}{5}$
\therefore The probability of NOT getting a ble bal is $\frac{4}{5}$
The sum of the probabilites is 1

I Experimental data

Theoretical probability	What we expect to happen					The more trias that are completed the closer experimental probability and theoretical probability become		
Experimental probability								
The probabilty becomes more accurate with more trials. Theoretical probability is proportional								
Sample space The possble atcomes from roling a dice								
	1	2	3	4	5	6		
- H	IH	$2 . \mathrm{H}$	3,H	4, H	5, H	6, H		
这衰 T	IT	$2, T$	3,7	4,T	5,T	6,T		

Independent events

The outcome of two events happening The
outcome of the first event has no bearing on the
outcome of the other

$=P(A$ and $B) \times P(B)$

Tree diagram for independent event
kobel has a bag with 3 blve counters and 2 yellow She picks a counter and repbces it before the second pick

Because they are reploced the second pick has the same probability

Tables, Venn diagrams, Frequency trees

