	P10: Forces and Motion Knowledge Organis	ser (F)	PT65.1	
Newton's Second Law	 The resultant force acting on an object is equal to its mass times its acceleration (F = ma) Bigger resultant force gives a bigger acceleration Bigger masses need bigger forces to get the same acceleration 	Elastic Object	•An object that returns to its original shape when the forces deforming it (changing its shape) are removed	
		Extension, e	•The increase in length from the original length •Measured in cm or m	gth
Mass, m	The amount of matter in an object.Measured in kilograms, kg.		 Extension = new length – original length Directly proportional to the force applied to the object 	С
Weight, W	The force acting on an object due to gravity.Measured in Newtons, N.	Limit of Proportionality	•Beyond the limit of proportionality, the	
Gravitational Field Strength, g	 The force acting on an object per kilogram due to gravity. Measured in N/kg On Earth's surface, g is 9.8 N/kg 		 extension stops being directly proportional to the force applied to the object. •A graph of F against x stops being a straight line 	the force applied to the object. •A graph of F against x stops being a straight
Acceleration Due to Gravity, g	 The acceleration experienced by an object caused by the gravitational field. On Earth, this is 9.8 m/s² 	Hooke's Law	•The extension of a spring is directly proportional to the force applied as long as the limit of proportionality is not exceeded •F = k x e	:he
Terminal Velocity	 When the frictional force (drag) acting on an object falling through a fluid is equal to its weight, it has reached terminal velocity The resultant force = 0 Acceleration = 0 	Spring Constant, k	 How 'stretchy' a spring is The bigger the spring constant, the less stretchy it is 	
Stopping Distance	 Stopping distance = thinking distance + braking distance Thinking distance is the distance travelled during the driver's reaction time. Affected by drugs, alcohol, tiredness, using a mobile phone (i.e. distraction) Braking distance is the distance travelled during the time the braking force acts. Affected by road conditions and poor vehicle maintenance. The faster a vehicle is travelling, the bigger the stopping distance because it travels further in the time taken to stop The braking force can be calculated using F = ma 			
		Key Equations T	io Learn	
			Force = spring constant x extension F = k x e	