Unit 17 Higher More Algebra V8 V21 V22 V23 V24 V365 V370

You can change the subject of a formula by isolating the terms involving the new subject.

When the letter to be made the subject appears twice in the formula you will need to factorise.

You may need to factorise before simplifying an algebraic fraction:

- Factorise the numerator and denominator.
- Divide the numerator and denominator by any common factors.

You may need to factorise the numerator and/or denominator before you multiply or divide algebraic fractions.

To add or subtract algebraic fractions, write each fraction as an equivalent fraction with a common denominator.

To find the lowest common denominator of algebraic fractions, you may need to factorise the denominators first.

To rationalise the fraction $\frac{1}{a\pm\sqrt{b}}$, multiply by $\frac{a\mp\sqrt{b}}{a\mp\sqrt{b}}$

To show a statement is an identity, expand and simplify the expressions on one or both sides of the equals sign, until the two expressions are the same.

A function is a rule for working out values of y when given values of x e.g. y = 3x and $y = x^2$

The notation f(x) is read as 'f of x'.

fg is the composition of the function f with the function g. To work out fg(x), first work out g(x) and then substitute your answer into f(x).

The inverse function reverses the effect of the original function. $f^{-1}(x)$ is the inverse of f(x).

To prove a statement is not true you can find a **counter-example** – an example that does not fit the statement.

For an algebraic proof let *n* represent any integer

Even number	2 <i>n</i>
Odd number	2n + 1 or $2n - 1$
Consecutive numbers	$n, n + 1, n + 2, \dots$
Consecutive even numbers	$2n, 2n + 2, 2n + 4, \dots$
Consecutive odd numbers	2 <i>n</i> + 1, 2 <i>n</i> + 3, 2 <i>n</i> + 5,

A vector is a quantity that has both size (or magnitude) and direction.

Examples of vector quantities are: • displacement

velocity

force

A scalar is a quantity that has size (or magnitude) only.

Examples of scalar quantities are: -

speed

Vectors are written as **bold** lower case letters: a, b, c. When handwriting, underline the letter: a, b, c

This vector goes from the point A to the point B.

We can write this vector as AB.

To go from the point A to the point B we must move 6 units to the right and 3 units up.

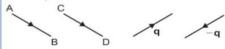
We can represent this movement using a column vector.

$$\overrightarrow{AB} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

This is the horizontal component. It tells us the number of units in the x-direction.

This is the vertical component. It tells us the number of units in the y-direction.

If $\overrightarrow{AB} = \overrightarrow{CD}$ then the line segments AB and CD are equal in length and are parallel. $\overrightarrow{AB} = -\overrightarrow{BA}$



2a is twice as long as a and in the same direction.

-a is the same length as a but in the opposite direction.

Triangle law for vector addition: Let $\overrightarrow{AB} = a$, $\overrightarrow{BC} = b$ and $\overrightarrow{AC} = c$. Then $\mathbf{a} + \mathbf{b} = \mathbf{c}$ forms a triangle.

and Proof

18 Vectors

Maths Higher / Unit

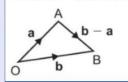
 \vdash

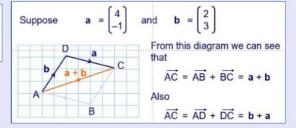
 $\overline{\mathbf{H}}$

Year

When $\mathbf{c} = \mathbf{a} + \mathbf{b}$ the vector \mathbf{c} is called the **resultant vector** of the two vectors a and b.

When $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \mathbf{b} - \mathbf{a}$.





Unit 18 Higher Vectors and Proof V353 V353a

With the origin O, the vectors \overrightarrow{OA} and \overrightarrow{OB} are called the **position** vectors of the points A and B. In general, a point with coordinates (p,q) has position vector $\begin{pmatrix} p \\ q \end{pmatrix}$

In general, if the vector is multiplied by the scalar k, then

$$k \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} kx \\ ky \end{bmatrix}$$

For example,

$$3 \times \begin{bmatrix} -2 \\ 5 \end{bmatrix} = \begin{bmatrix} -6 \\ 15 \end{bmatrix}$$

When a vector is multiplied by a scalar the resulting vector is either parallel to the original vector or lies on the same line.

 $\overrightarrow{PQ} = k\overrightarrow{QR}$ shows that the lines PQ and QR are parallel. Also they both pass through point Q so PQ and QR are part of the same straight line. P, Q and R are said to be collinear (they all lie on the same straight line).

Unit 19 Higher Proportion and Graphs V345 V255 V254

When a graph of two quantities is a straight line through the origin, one quantity is directly proportional to the other.

The symbol ∞ means 'is directly proportional to'.

If y is directly proportional to x, $y \propto x$ and y = kx, where k is a number, called the **constant of proportionality**.

Where *k* is the constant of proportionality:

- o if y is proportional to the square of x then $y \propto x^2$ and $y = kx^2$
- o if y is proportional to the cube of x then $y \propto x^3$ and $y = kx^3$
- o if y is proportional to the square root of x then $y \propto \sqrt{x}$ and $y = k\sqrt{x}$

When y is **inversely proportional** to x, $y \propto \frac{1}{x}$ and $y = \frac{k}{x}$

The tangent to a curved graph is a straight line that touches the graph at a point. The gradient at a point on a curve is the gradient of the tangent at that point.

Expressions of the form a^x or a^{-x} , where a>1, are called **exponential functions**.

The graph of an exponential function has one of these shapes.

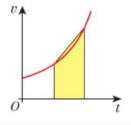
 $y = a^x$ where a > 1 or $y = b^{-x}$ where 0 < b < 1

exponential growth

 $y = a^{-x}$ where a > 1 or $y = b^{x}$ where 0 < b < 1 exponential decay

Exponential graphs intersect the y-axis at (0, 1) because $a^0 = 1$ for all values of a.

The area under a velocity–time graph shows the displacement, or distance from the starting point. To estimate the area under a part of a curved graph, draw a chord between the two points you are interested in, and straight lines down to the horizontal axis to create a trapezium. The area of the trapezium is an estimate for the area under this part of the graph.



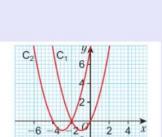
The gradient of the chord gives the average rate of change

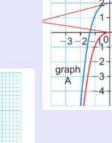
Higher: Transformation of Graphs Corbett Maths link: Transformations-of-graphs

The graph of y = f(x) is transformed into the graph of: y = f(x) + a by a translation of a units parallel to the y-axis or a translation by $\begin{pmatrix} 0 \\ a \end{pmatrix}$

The graph of y = f(x) is transformed into the graph of: y = f(x) + a by a translation of a units parallel to the y-axis or a translation by $\begin{pmatrix} 0 \\ a \end{pmatrix}$

y = f(x + a) by a translation of -a units parallel to the x-axis or a translation by $\begin{pmatrix} -a \\ 0 \end{pmatrix}$

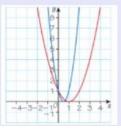




y = f(-x) by a reflection in the y-axis

y = -f(x) by a reflection in the x-axis

y = f(ax) by a stretch of scale factor $\frac{1}{a}$ parallel to the x-axis



Page 2