

# **Key Stage 3 Computing and ICT.**

All knowledge organisers are hosted in the ICT and Computing department website which can be accessed directly via the link http://exmouthcollege.moodle.webanywhere.co.uk/

# Year 7

Effective digital working practices Knowledge Organiser Data representation Knowledge organiser Block structured programming Knowledge Organiser Software Knowledge Organiser Hardware Knowledge Organiser Boolean logic Knowledge organiser



### Year 7 Autumn 1

# Unit 1 Analysing and displaying data



|                               | T                                                                             |                                             |                                 |
|-------------------------------|-------------------------------------------------------------------------------|---------------------------------------------|---------------------------------|
| Topic/Skill                   | Definition/Tips                                                               | Example                                     |                                 |
| <ol> <li>Types of</li> </ol>  | Qualitative Data – non-numerical data                                         | Qualitative Data – eye colour, gender       |                                 |
| Data                          | Quantitative Data – numerical data                                            | etc.                                        |                                 |
|                               | Continuous Data - data that can take any                                      | Continuous Data - weight, voltage e         |                                 |
|                               | numerical value within a given range.                                         | D: 4 D 4                                    |                                 |
|                               | Discrete Data – data that can take only specific values within a given range. | Discrete Data – number of children,         |                                 |
| 2. Grouped                    | Data that has been bundled in to                                              | shoe size etc.                              | Number of children              |
| Data Data                     | categories.                                                                   | Foot length, I, (cm)                        |                                 |
| Data                          | categories.                                                                   | 10 ≤ l < 12                                 | 5                               |
|                               | Seen in grouped frequency tables,                                             | 12 ≤ l < 17                                 | 53                              |
|                               | histograms, cumulative frequency etc.                                         |                                             |                                 |
| 3. Primary                    | Primary Data - collected yourself for a                                       | Primary Data - data                         | collected by a                  |
| /Secondary<br>Data            | specific purpose.                                                             | student for their own                       |                                 |
| Data                          | Secondary Data - collected by someone                                         | Secondary Data - C                          | ensus data used to              |
|                               | else for another purpose.                                                     | analyse link betwee                         |                                 |
|                               | 1-1                                                                           | earnings.                                   |                                 |
| 4. Mean                       | Add up the values and divide by how many                                      | The mean of 3, 4, 7,                        | 6, 0, 4, 6 is                   |
|                               | values there are.                                                             | 3+4+7+6-                                    | $\frac{10,0,4,015}{10+4+6} = 5$ |
|                               |                                                                               | 7                                           |                                 |
| <ol><li>Mean from a</li></ol> |                                                                               | Height in cm Frequency<br>$0 < h \le 10$ 8  | Midpoint   F × M                |
| Table                         | Multiply Frequency by values or                                               | 10 < h ≤ 30 10 20 10×20                     |                                 |
|                               | midpoints                                                                     | 30 < h ≤ 40 6<br>Total 24                   | 35 6×35=210<br>Ignore! 450      |
|                               | 3. Add up these values                                                        | Estimated Mean                              |                                 |
|                               | 4. Divide this total by the Total Frequency                                   | height: 450 ÷ 24 =                          |                                 |
|                               | If grouped data is used, the answer will be                                   | 10.55                                       |                                 |
|                               | an estimate.                                                                  |                                             |                                 |
| 6. Median                     | The middle value.                                                             | Find the median of:                         | 4523676                         |
| Value                         | The initiality value.                                                         | I mo une median on                          | 4, 5, 2, 5, 0, 7, 0             |
| 1 4450                        | Put the data in order and find the middle                                     | Ordered: 2, 3, 4, 5,                        | 5, 6, 7                         |
|                               | one.                                                                          |                                             |                                 |
|                               | If there are two middle values, find the                                      | Median = 5                                  |                                 |
|                               | number half way between them by adding                                        |                                             |                                 |
|                               | them together and dividing by 2.                                              |                                             |                                 |
| 7. Median                     | Use the formula $\frac{(n+1)}{2}$ to find the position of                     | If the total frequence                      |                                 |
| from a Table                  | the median.                                                                   | will be the $\left(\frac{15+1}{2}\right)$ = | 8th position                    |
|                               |                                                                               | (2)                                         | =                               |
|                               | n is the total frequency.                                                     |                                             |                                 |
| 8. Mode                       | Most frequent/common.                                                         | Find the mode: 4, 5,                        | 2, 3, 6, 4, 7, 8, 4             |
| /Modal Value                  |                                                                               |                                             |                                 |
|                               | Can have more than one mode (called bi-                                       | Mode = 4                                    |                                 |
|                               | modal or multi-modal) or no mode (if all                                      |                                             |                                 |
|                               | values appear once)                                                           |                                             |                                 |
| 9. Range                      | Highest value subtract the Smallest value                                     | Find the range: 3, 3                        | 1, 26, 102, 37, 97.             |
|                               | Range is a 'measure of spread'. The smaller                                   | n                                           |                                 |
|                               | the range the more consistent the data.                                       | Range = 102-3 = 99                          |                                 |

| 10. Outlier   | A value that 'lies outside' most of the other values in a set of data.  An outlier is much smaller or much larger than the other values in a set of data. | Outlier  Outlier                                            |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 11.7          | Th. 11 of 1 or 1 to 00 to 1.                                                                                                                              | 0 20 40 60 80 100                                           |
| 11. Lower     | Divides the bottom half of the data into                                                                                                                  | Find the lower quartile of: 2, <u>3</u> , 4, 5, 6,          |
| Quartile      | two halves.                                                                                                                                               | 6, 7                                                        |
|               |                                                                                                                                                           |                                                             |
|               | $LQ = Q_1 = \frac{(n+1)}{4}th \text{ value}$                                                                                                              | $Q_1 = \frac{(7+1)}{4} = 2nd \text{ value } \to 3$          |
| 12. Lower     | Divides the top half of the data into two                                                                                                                 | Find the upper quartile of: 2, 3, 4, 5, 6,                  |
| Quartile      | halves.                                                                                                                                                   | 6,7                                                         |
| -             |                                                                                                                                                           |                                                             |
|               | $UQ = Q_3 = \frac{3(n+1)}{4} th \text{ value}$                                                                                                            | $Q_3 = \frac{3(7+1)}{4} = 6th \text{ value } \rightarrow 6$ |
| 13.           | The difference between the upper quartile                                                                                                                 | Find the IQR of: 2, 3, 4, 5, 6, 6, 7                        |
| Interquartile | and lower quartile.                                                                                                                                       |                                                             |
| Range         | •                                                                                                                                                         | $IOR = O_2 - O_1 = 6 - 3 = 3$                               |
|               | $IOR = O_3 - O_1$                                                                                                                                         | 7.1 7.1 7.1                                                 |
|               | .4 63 61                                                                                                                                                  |                                                             |
|               | The smaller the interquartile range, the                                                                                                                  |                                                             |
|               | more consistent the data.                                                                                                                                 |                                                             |
| Ter these     | more consistent me data.                                                                                                                                  |                                                             |

### Try these

- 1. Here is a list of the numbers of bags some shoppers were carrying when leaving a supermarket.
  - 1 2 5 4 0 5 4
  - a Find the median.
  - b Work out the mean.
  - c Work out the range.
- 2. Here are the lengths of some lines measured with a ruler.
  - 4 cm 7 cm 11 cm 7 cm 1 cm
  - a Work out the mean.
  - b Work out the range.
- Here are the ages in years of some people in a sports club.
  - 8 12 25 18 30 23 35 33 28 18
  - 9 18 22 10 21 15 29 31 20 23

Complete this grouped frequency table using intervals of equal width.

The first interval has been done for you.

| Age (years) | Tally | Frequency |
|-------------|-------|-----------|
| 0-9         |       |           |
|             |       |           |
|             |       |           |
|             |       |           |

4. Students in two classes did a test.

The mean for class A was 58 and the range was 28

The mean for class B was 75 and the range was 10

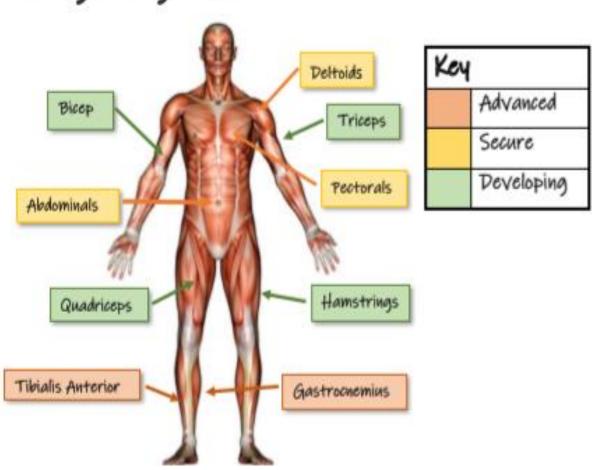
Make two comparisons between class A and Class B.



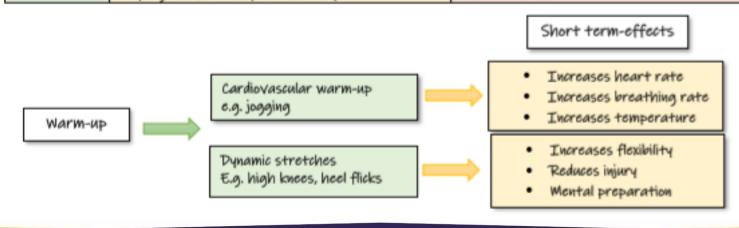
### Year 7 Autumn 1

# **Unit 2 Number Skills**




| Topic/Skill                 | Definition/Tips                                                                                                                  | Example                                                                                    |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                             | A whole number that can be positive,                                                                                             | -3. 0. 92                                                                                  |
| 1. Integer                  | negative or zero.                                                                                                                | -3,0,92                                                                                    |
| 2. Decimal                  | A number with a <b>decimal point</b> in it. Can be positive or negative.                                                         | 3.7, 0.94, -24.07                                                                          |
| 3. Negative<br>Number       | A number that is less than zero. Can be decimals.                                                                                | -8, -2.5                                                                                   |
| 4. Addition                 | To find the total, or sum, of two or more<br>numbers.<br>'add', 'plus', 'sum'                                                    | 3+2+7=12                                                                                   |
| 5. Subtraction              | To find the difference between two                                                                                               | 10 - 3 = 7                                                                                 |
| J. Sociation                | numbers. To find out how many are left when some are taken away.                                                                 | 10-3-7                                                                                     |
| _                           | 'minus', 'take away', 'subtract'                                                                                                 |                                                                                            |
| 6.<br>Multiplication        | Can be thought of as repeated addition.  'multiply', 'times', 'product'                                                          | $3 \times 6 = 6 + 6 + 6 = 18$                                                              |
| 7. Division                 | Splitting into equal parts or groups. The process of calculating the number of times one number is contained within another one. | $20 \div 4 = 5$ $\frac{20}{4} = 5$                                                         |
|                             | 'divide', 'share'                                                                                                                |                                                                                            |
| 8. Remainder                | The amount 'left over' after dividing one integer by another.                                                                    | The remainder of 20 ÷ 6 is 2, because 6 divides into 20 exactly 3 times, with 2 left over. |
| 9. Multiple                 | The result of multiplying a number by an integer. The times tables of a number.                                                  | The first five multiples of 7 are:<br>7, 14, 21, 28, 35                                    |
| 10. Factor                  | A number that divides exactly into another                                                                                       | The factors of 18 are:                                                                     |
|                             | number without a remainder.                                                                                                      | 1, 2, 3, 6, 9, 18                                                                          |
|                             | It is useful to write factors in pairs                                                                                           | The factor pairs of 18 are:<br>1, 18<br>2, 9<br>3, 6                                       |
| 11. Lowest                  | The smallest number that is in the times                                                                                         | The LCM of 3, 4 and 5 is 60 because it                                                     |
| Common<br>Multiple<br>(LCM) | tables of each of the numbers given.                                                                                             | is the smallest number in the 3, 4 and 5 times tables.                                     |
| 12. Highest                 | The biggest number that divides exactly                                                                                          | The HCF of 6 and 9 is 3 because it is                                                      |
| Common<br>Factor (HCF)      | into two or more numbers.                                                                                                        | the biggest number that divides into 6 and 9 exactly.                                      |

| 13. Prime                       | A number with exactly two factors.                                                   | The first ten prime numbers are:                      |
|---------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|
| Number                          | A number that can only be divided by itself and one.                                 | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29                    |
|                                 | The number 1 is not prime, as it only has one factor, not two.                       |                                                       |
| 14. Prime                       | A factor which is a prime number.                                                    | The prime factors of 18 are:                          |
| Factor                          |                                                                                      | 2,3                                                   |
| 15. Product of<br>Prime Factors | Finding out which prime numbers<br>multiply together to make the original<br>number. | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|                                 | Use a prime factor tree.                                                             | 2)                                                    |
|                                 | Also known as 'prime factorisation'.                                                 | (3) (3)                                               |


### Try these

- 1. Find 48 × 100
- 2. Work out 384 ÷ 4
- Work out £38 + £2.16 + 42p.
   Write all the factor pairs of 18
- 5. Find the lowest common multiple (LCM) of 15 and 20
- 6. Write down the value of a  $7^2$
- b √100
- The height of the highest mountain in Scotland is 1344 metres.
   The height of the highest mountain in England is 978 metres. Work out the difference between these two heights.
- 8. Some of the factors of 182 are prime numbers. Find one of these numbers.

# Year 7 knowledge Organiser



|                             |                                                                                                 | Examples                                                                                                   |
|-----------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Flexion                     | Decreasing the angle at a joint                                                                 | Preparation phase when kicking a football (Knee<br>bending)                                                |
| Extension                   | Increasing the angle at a joint                                                                 | Execution phase when kicking a football (Knee straightening)                                               |
| Planta-flexion              | Increasing the angle at the ankle joint                                                         | Pointing your toes when performing an arabesque                                                            |
| Dorsi-flexion               | Decreasing the angle at the ankle joint                                                         | Preparation phase during a jump shot in basketball                                                         |
| Abduction                   | Moving limbs away from the centreline of the body                                               | Abducting the shoulder when preparing to bat in rounders                                                   |
| Adduction                   | Moving limbs towards the centreline of the body                                                 | Adducting the shoulder during the executing phase when batting in rounders                                 |
| Muscular<br>Endurance       | Ability of a muscle or to contract over a sustained period.                                     | Middle-distance running, rowing or swimming                                                                |
| Cardiovascular<br>Endurance | The ability of the heart and lungs to supply oxygen to the working muscles                      | long-distance runners, team sports performers, endurance cyclists and rowers                               |
| Agility                     | The ability to move and change direction quickly (at speed) whilst maintaining control          | A footballer needs agility to change direction quickly<br>whilst dribbling the ball to outwit the defender |
| Power                       | Strength x speed                                                                                | A basketballer needs power in the quadriceps when<br>jumping to perform a lay-up.                          |
| Reaction Time               | The time taken to initiate a response to a stimulus                                             | A sprinter needs good reaction time to respond to<br>the starting gun.                                     |
| Flexibility                 | The range of movements possible at a joint                                                      | A gymnast needs good flexibility to be able to<br>perform movements such as, the splits                    |
| Coordination                | The ability to use different (two or more) parts of the body together, smoothly and efficiently | A cricket player needs coordination when hitting a<br>cricket ball with a bat                              |



# Language for learning Physical Education

Year 7 (AO1)

# Year 8 (AO2)

# Year 9 (AO3)

### Movement Analysis

- Muscles
  - Position and location on the body
- · Types of actions/movements
  - Definitions: Flexion, extension, abduction, adduction, Planta flexion & dorsi-flexion.
  - Linked to practical examples

# Movement Analysis

- Bones / Types of bones
- Position and location on the body
- · Antagonistic pairs
  - Agonist and antagonist
- · Types of actions/movements
  - Linked to practical examples (preparation, execution & follow through)

# Movement Analysis

- Muscles & bones working together
  - Actions and movements
  - Analysis linked to practical examples
- · Types of Muscle contractions
  - Analysis-Isometric, isotonic: eccentric & concentric

# Fitness & Training

- · Components of fitness
- Definitions: Muscular endurance, cardiovascular endurance, agility, reaction time, flexibility and coordination.
- Linked to sporting examples

# Fitness & Training

- Components of fitness
  - Relative of importance to a sports performer.
- · Methods of training / FITT
  - Linked to component of fitness and specificity of a performer

# Fitness & Training

- Components of fitness
  - Analysis & Evaluation
- Methods of training / SPORT
  - Comparing sports performers
  - Advantages and disadvantages

# Cardio-respiratory

- · Short-term effects of exercise
  - Linked to components of an effective warm-up.

# Cardio-respiratory

- Types of respiration
  - Definitions: Aerobic (with O2)
     Anaerobic (without O2)
  - Link to practical examples
- long-term effects of exercise

# Cardio-respiratory

- Types of respiration
  - Calculations
  - Analysis to practical examples/ components of fitness
- Short/long-term effects of exercise
  - Evaluate benefits to a performer

# Year7 — Pop-up Book knowledge organiser

### **Design Brief**

A design brief is a summery of the design opportunity. It is typically 1 -2 paragraphs long.

### It should:

- State the context
- Identify the client/
   User
- State the design opportunity or problem
- Identify any constraints—things that limit what can be done
- It might also contain some user
   needs and wants



### Preparation of Fibres

During the first step of the paper making process, the material used to make the paper is converted to pulp .

### Sheet formation

The next step is sheet formation. At this stage in the process, the pulp mixture is diluted some more with water. This is then strained through a moving screen made of fine mesh in order to create a fibrous web.

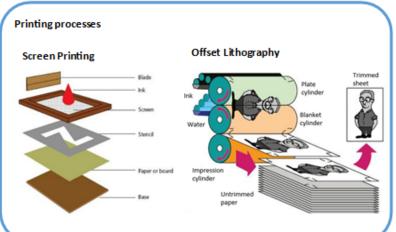
### Drying

The final stage of the paper making process is drying, which is accomplished with time and pressing of the paper.



### Types of paper and board

| Type                 | Common uses                                                                  | Characteristics                                                                              | Weight         |
|----------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|
| Cartridge<br>paper   | Printed flyers and<br>leaflets. Used for<br>drawing and painting.            | Lightly textured (not perfectly smooth), often a light cream colour.                         | 100-150<br>gsm |
| Bleed-proof<br>paper | Printed (multi-coloured)<br>flyers and leaflets.<br>Used with felt-tip pens. | Allows sharp images as inks do<br>not seep through the paper.<br>Smooth and relatively hard. | 70–150<br>gsm  |
| Layout<br>paper      | Engineering drawings                                                         | Allows some light through, but not<br>clear enough to see through;<br>relatively hard.       | 50-90<br>gsm   |


| Туре                    | Common uses                                            | Characteristics                                                                                                        | Weight         |
|-------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------|
| Corrugated<br>cardboard | General purpose<br>material for boxes<br>and packaging | Two layers of card separated by a fluted inner<br>section. Low cost and often made from<br>recycled paper and card.    | 250+ gsm       |
| Carton<br>board         | Food packaging                                         | White surfaces with grey fibres between.  Tough and lightly textured.  Lower cost than fully bleached card.            | 230-420<br>gsm |
| Foil-lined<br>board     | Drinks cartons<br>Ready-meal lids                      | Made by laminating aluminium foil to one side<br>of another board.<br>Insulating properties, can keep moisture in/out. | 250+ gsm       |
| Solid white<br>board    | Book covers<br>Quality packaging                       | Strong, high quality white card made from pure<br>bleached wood pulp. Excellent for printing.                          | 200-400<br>gsm |
| Ink jet card            | Greetings cards                                        | Strong card. Can be coated to stop ink<br>spreading when printed.                                                      | 240-280<br>gsm |

# Design & Technology / Graphics – HT1 Year 7

# Year7 — Pop-up Book knowledge organiser

|               | Questions                                                             |
|---------------|-----------------------------------------------------------------------|
| Aesthetics    | What colours are used?<br>How does the product<br>look and feel?      |
| Cost          | How much does it cost buy?                                            |
| Customer      | Who is going to buy the product? Who is going use it?                 |
| Environment   | Does it use recycled ma<br>terials? Could it be reco<br>cled?         |
| Size          | How tall/wide/long is it mm?                                          |
| Safety        | Are there any sharp ed or small parts?                                |
| Function      | What does it do? How<br>does it do that? What<br>mechanisms are used? |
| Materials     | What is it made from?                                                 |
| Manufacturing | What processes were used to make it?                                  |





### **Evaluate**

What is the purpose of an evaluation?

- Decide whether it satisfies the brief
- What other people think of your product.
- It can help you decide how and where your product can be improved.
- It test whether the idea will work.

# Questions to ask yourself when evaluating.

- Does it work? (could you get other people to test it and record the results?)
- What would I do differently if I could make it again?
- What did I find difficult?
- What was a success?



### The Eatwell Guide

The <u>Eatwell</u> Guide is the UK healthy eating model. It shows the proportions in which different types of foods are needed to have a well-balanced and healthy diet. The proportions shown are representative of your food consumption over the period of a day or even a week, not necessarily each <u>meal time</u>.



The <u>Eatwell</u> Guide is based on the Government's <u>Eight</u> tips for healthy eating, which are:

- 1. Base your meals on starchy foods.
- 2. Eat lots of fruit and vegetables.
- 3. Eat more fish including a portion of oily fish each week.
- 4. Cut down on saturated fat and sugar.
- 5. Try to eat less salt no more than 6g a day for adults.
- 6. Get active and be a healthy weight.
- 7. Don't get thirsty
- 8. Don't skip breakfast.

### Year 7 Food Preparation and Nutrition Block 1: Knowledge Organizer

### Fruits and vegetables

Eating at least five portions of fruit and vegetables every day is recommended for health. All fruits and vegetables count towards 5 A DAY except for potatoes. Fruits and vegetables can be fresh, canned, dried, frozen or juiced Fruits and vegetables are low in fat and high in fibre, so help to provide us with a range of important nutrients without exceeding our energy requirements. We need fibre in our diet to help us maintain a healthy gut.

They also contain vitamins and minerals – the main ones being vitamin C, vitamin A and folate. Some fruit and vegetables are higher in some vitamins and minerals than others, e.g. bananas are high in potassium, whereas dried apricots are high in iron. This is why it is important to eat a range of fruit and vegetables rather than having the same ones all the time.



### Top tips:

- Choose fruit or chopped vegetables as a snack.
- Add dried or fresh fruit to breakfast cereals. (To reduce the risk of tooth decay, dried fruit is best enjoyed as part of a meal, not as a between meal snack.)
- Have a salad with sandwiches or with pizza.
- Add vegetables to casseroles and stews and fruit to desserts.
- •Try to eat different fruits and vegetables every day.

### **Key Processes:**

Demonstrate the safe use of the hob by making hot chocolate Demonstrate the safe use of the grill by making toast or pizza toast Demonstrate the safe use of the oven By making cheese / cheese and courgette muffins



### **Basic Nutrition**

| Nutrient                       | Function                               |
|--------------------------------|----------------------------------------|
| Protein                        | Growth & repair                        |
| Carbohydrate<br>Starch & sugar | Energy                                 |
| Fat                            | Energy                                 |
| Vitamins<br>A, B, C, D         | General protection                     |
| Minerals<br>Iron<br>Calcium    | Healthy blood<br>Healthy bones & teeth |

### The Cooker



### The safe use of the hob

Do not heat the ring without a pan containing food on it Keep pan handles facing in Allow to cool before cleaning

### The safe use of the grill

Take care with detachable handles Do not leave food unattended

### The safe use of the oven

Have an oven buddy
Use hole free, dry oven gloves
Stand back when you open
the door
Put your food in, and take out
without lifting your hands in
the oven





### How are Fabrics Made?

Fabrics are made up of different types of fibres. Fibres can come from nature, like cotton from the cotton plant, or wool from sheep and they can also be synthetic (man-made) and be made from chemicals. Fibres often look like hair and they can be processed in different ways to make fabric. How they are processed affects the properties of the fabric, as does the fibre you start with.

There are three main ways to make fabric- Weaving, Knitting and Felting or Bonding.

### Woven Fabric

When fibres are collected from nature, they need to be cleaned before they can be turned into fabric, they also are often carded (combed) to remove any debris and help the fibres lay in the same direction. Imagine a sheep's fleece- that needs cleaning and carding before the next stage of the process can begin.

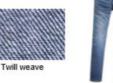


Carding machine



This giant machine spins all the fibres into yarn, ready for weaving.

Once the fibres are clean and ready to use, they are twisted together- this is called spinning. Lots of fibres are spun together making one long strand. The thickness of the strand varies, depending on how you want finished fabric to turn out.


The spun fibres are then woven together on something called a loom. There are lots of different types of weaves and they give a different end result. You might be most familiar one called a plain weave, this is used for fabric that could be made into school shirts, dresses and bedding. If you look very carefully at your school shirt, you might be able to see the different strands woven together. A Twill weave is used to make Denim fabric, which will be used to make Jeans.



Weaving can also be done by hand, this is usually for special fabric, perhaps even using silk.









### How are Fabrics Made?

### **Knitted Fabric**

When you think of knitted fabric, you might think of what your grandparents or parents or even you do with knitting needles. Essentially, it is the same process for making knitted fabrics, but on a much larger scale, and using machinery.

Just the same as when making woven fabric, the fibres need cleaning and carding and then spinning before they can be knitted.

After that, the yarn is knitted into either rolls of flat fabric, or sometimes tubes of fabric or even whole garments such as tights or socks.



Heavy weight fighter Maurice
Greene started knitting before a fight
to calm him down. He's recently
moved onto crochet.





This is a type of loom that is making knitted fabric that is in the shape of a tube. This could be used to make the body of a t-shirt, the arms and neck hole would be attached separately.

This is a picture of what knitted fabric would look like if you looked at it very closely. You can see the yarn is looped together. This makes knitted fabric stretchy so it's great for making into things like T-shirts and sportswear.





So it's not just woolly jumpers that are knitted, but also leggings, swim suits, underwear, socks and any other Textiles items that are stretchy, are likely to be made from knitted fabric.





'Warp' knit



### How are Fabrics Made?

### Felted and Bonded Fabric

Felted fabric is made directly from the fibres. No spinning is needed, although the fibres are still washed and carded. Wool is one of the best natural fibres to create felted fabric, because each fibre has a scaly structure that looks a bit like a fir-cone. When the fibres are heated up, the scales open up and then lock together with other fibres when they are agitated (rubbed together).



Wool fibre under microscope



Felt fabric does not stretch, and can be very warm because of the way it is made. Felt does not fray like woven fabric, or unravel or ladder like knitted fabric but it doesn't drape very well so tends to be used for items like hats, bags and coats.

You may have heard of Needle Felting and Wet Felting. These are both crafts that can be done at home to create a variety of different items. Felting is also done on an industrial scale, and felt can be shaped as it's being made-like into the shape of a hat!



Bonded fabrics are also made directly from fibres, rather than yarn. The fibres are laid out in a random pattern, and then bonded together using heat or glue.

These fabrics tend to be very weak, but they don't stretch or fray.

They are used for disposable items like J-cloths, surgical gowns and wet wipes.

- **Q** What would be the best method of making fabric for a school bag? Explain why.
- Q Why are fibres 'carded' before being spun into yarn?
- **Q** What is the name for the machine that is used to make yarn into fabric?





### Natural Fibres

Textiles are usually made up of fibres. Fibres can come from all sorts of places like plants, animals, insects and even synthetic (man-made) fibres that come from chemicals. Fibres often look like hairs and can be processed in different ways to make Textiles, also called fabric.

### Wool

Wool is a fibre that comes from animals. We mostly get wool from sheep, but you can also get wool from camels, alpacas, llamas, goats and even rabbits! It's possible to make wool from anything that is hairy- you could even make wool fabric from a dog!



Angora rabbit



Before and after shearing!

The wool is sheared from the animal (like having a haircut) and then it's washed, combed and processed to turn it into wool fabric. Wool fabric is warm so it's good for making into things like jumpers, scarves and coats. It's also used to make carpets and insulation to keep your house warm. Wool is absorbent and it can also shrink easily so you have to be careful when you wash it.







### Cotton



Cotton Boll

Cotton is a fibre that comes from the cotton plant. The plant grows in warm climates and needs lots of water. After the plant has flowered, it produces a 'boll' which contains the seeds of the plant. In nature, these would be blown around by the wind and the seeds would disperse and grow new plants. Instead, we farm the plants and pick the cotton 'bolls', process them and turn them into cotton fabric.

Cotton feels cool to wear when it's hot, but it can crease easily. It can be quite hard wearing so can be washed easily and can last a long time. Cotton is also absorbent so it's good for making things like towels. Other items made from cotton include bedding, t-shirts, socks and underwear, trousers and school shirts. Cotton is cool to wear so it is used for a lot of clothing.



Field of Cotton plants











### Silk

Silk comes from the cocoon of a silk worm. The silk worm (which is actually a caterpillar) spins a cocoon of silk around itself when it is ready to turn into a moth. People farm the silk worms, just like people farm sheep and when they make their cocoons it can take them up to 8 days! The farmers then put them in hot water to release the glue that holds the silk fibres together. Then the silk fibres are processed to turn them into silk fabric.



Silk Worm



Silk Worm Cocoon

As each cocoon is very small, silk fabric is very expensive as it takes so much effort to make just one item – it takes around 1,800 cocoons to make one silk dress! Silk is quite a delicate fabric and can be easily damaged when it's wet (eg washing). Silk is often used for special items like wedding dresses, or special occasion shirts or ties but some people have silk underwear! Silk keeps you cool when it's hot, and also keeps you warm when it's cold. It has a natural 'lustre' or shine.







### Linen



Linen comes from a plant called the Flax plant. The stem of the plant is used to make fibres. The plants are cut, then the stems are soaked in water to get rid of the soft parts. That leaves the tough fibres behind which are then processed to turn them into linen fabric.

Flax plant

Linen is great for summer clothes because it's very cool to wear. Linen is hardwearing so lasts for a long time but creases very easily. Apart from summer clothes, it can also be used to make tea towels and table cloths among other things.

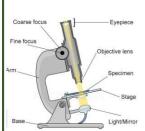








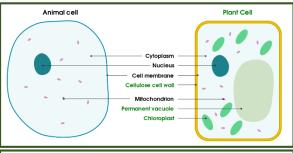
Flax plant drying after cutting


- Q What type of fibre do you think would make a good T-shirt? Can you give reasons why?
- **Q** Why do you think cotton is a good fibre to make summer socks?
- Q What fibre would be good to make a blanket from? Why would it work well?



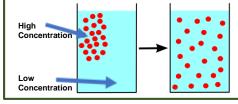
| Keyword        | Definition                                                                                             |
|----------------|--------------------------------------------------------------------------------------------------------|
| Cell           | Basic unit of life. Unicellular organisms only have one cell. Multicellular organisms have many cells. |
| Cell Membrane  | Controls the movement of substances in and out of the cell.                                            |
| Cytoplasm      | Jelly-like substance where chemical reactions take place.                                              |
| Nucleus        | Carries genetic information and controls the cell.                                                     |
| Mitochondria   | Where respirations takes place.                                                                        |
| Cell Wall      | Made of cellulose, provides support to the cell.                                                       |
| Vacuole        | Contains cell sap.                                                                                     |
| Chloroplasts   | Contains the green pigment chlorophyll, the site of photosynthesis.                                    |
| Tissue         | Something made from just one type of specialised cell.                                                 |
| Organ          | Something made from different groups of specialised cells all working together.                        |
| Organ System   | When a number of organs work together.                                                                 |
| Synovial Joint | A freely moveable joint. Examples include the hip, shoulder, elbow and knee joints.                    |

### Further Reading:


https://www.bbc.com/bitesize/guides/z9hyvcw/revision/2



**Light Microscope**: A device which uses light and a series of lenses to produce a magnified image of an object.


**Magnification** = How much bigger a sample/object appears under the microscope than it is in real life.

**Total Magnification** = Eyepiece lens x Objective lens



cranium (skull) mandible clavicle (shoulder bones) (upper arm radius (lower (hand bones). . (pelvic bones) femur (upper leg bone) fibula tibia (lower leg bones) (feet bones)

**Diffusion:** The movement of particles from an area of high concentration to an area of low concentration. Substances diffuse into and out of cells.



### **Antagonistic Muscles:**

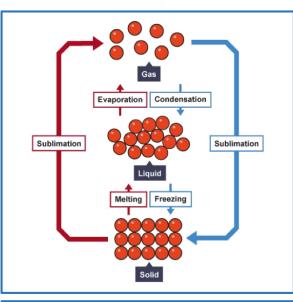
- Muscles work by getting shorter.
- Muscles can only pull and can't push.
- Muscles work in pairs.
- When you raise your forearm, the biceps contract and the triceps relax.
- When you lower your forearm, the biceps relax and the triceps contract.



| Red Blood Cell                                                                                   | Sperm Cell                                                                                                             | Root Hair Cell                                                                                                            | Palisade Cell                                                                                                                      | Nerve Cell                                                                     | Egg Cell                                                                                           |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                                  |                                                                                                                        |                                                                                                                           |                                                                                                                                    |                                                                                |                                                                                                    |
| Carries blood around the body.  Adaptations: No nucleus, large surface area and biconcave shape. | Carries the male genes.  Adaptations: Tail for swimming, mitochondria for energy, acrosome to break down the egg cell. | Take in water from the soil.  Adaptations: Long & thin; large surface area for maximum water absorption. Thin cell walls. | Production of food for the plant. <b>Adaptations</b> : Tall and thin.  Lots of chloroplasts to absorb sunlight for photosynthesis. | Carry signals around the body. <b>Adaptations</b> : Long axon.  Myelin sheath. | Carries the female genes.  Adaptations: Lots of mitochondria. Outer layer hardens once fertilised. |



| Keyword              | Definition                                                        |  |
|----------------------|-------------------------------------------------------------------|--|
| Reyword              | Deminion                                                          |  |
| Particle             | The general term for a small piece of matter.                     |  |
| State of Matter      | The distinct forms in which matter can exist (solid, liquid, gas) |  |
| Solid                | A substance with a fixed shape and volume.                        |  |
| Liquid               | A substance with a fixed volume but not a fixed shape.            |  |
| Gas                  | A substance that does not have a fixed shape or volume.           |  |
| Change of State      | The change of a substance from one physical form to another.      |  |
| Melting              | The change of state when a solid changes to a liquid.             |  |
| Freezing             | The change of state when a liquid changes to a solid.             |  |
| Condensing           | The change of state when a gas changes to a liquid.               |  |
| Evaporation          | The change of state when a liquid changes to a gas.               |  |
| Density              | The amount of mass that 1cm³ of a substance has.                  |  |
| Density<br>(formula) | Density = mass ÷ volume<br>p = m ÷ v                              |  |
| Dense                | Something which is heavy for its volume.                          |  |

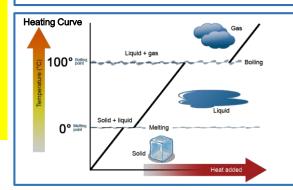

### Further Reading:

https://www.bbc.com/bitesize/guides/z2wmxnb/revision/1

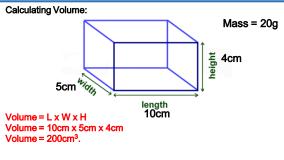
https://www.bbc.com/bitesize/articles/zgpv7p3








### Forces between particles:


**Solid**: There are strong forces of attraction between the particles in a solid. Therefore, particles can only vibrate in a fixed position.

**Liquid**: There are weaker forces of attraction between the particles in a liquid. Therefore, the particles are close together, and are able to move around each other.

Gas: The forces of attraction between the particles are overcome. Therefore, the particles are far apart and move quickly in all directions.



| Solid                                          | Liquid                                                                  | Gas                                                             |
|------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------|
|                                                |                                                                         |                                                                 |
| The particles vibrate in a fixed position.     | The particles are close together and move around each other.            | The particles are far apart and move quickly in all directions. |
| The particles cannot move from place to place. | The particles are arranged in a random position.                        | The particles are arranged in a random way.                     |
| Particles have a fixed shape and cannot flow.  | The particles flow and take the shape of the bottom of their container. | The particles flow and completely fill their container.         |
| The particles cannot be compressed (squashed)  | The particles cannot be compressed.                                     | The particles can easily be compressed.                         |



# Density:

1kg of a gas has a larger volume than 1kg of a solid. There is empty space between particles in a gas, but in a solid, they're tightly packed together.

### Calculating Density:

Density = Mass ÷ Volume Density =  $20g \div 200 \text{cm}^3$ 

Density = 0.1g/cm<sup>3</sup>