### HCF and LCM V219 V218

(Highest Common Factor and Lowest Common Multiple)

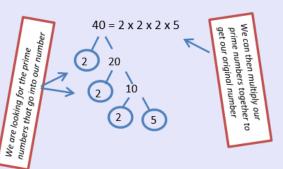
**HCF** - this is largest number that divides exactly into 2 or more numbers. E.g. HCF or 12 and 20 = 4 LCM - this is the smallest number that is in the

times table of 2 or more numbers. E.g. LCM of 12 and 20 = 60

#### **Product of Prime Factors**

This is finding all the prime numbers that would multiply to give our number. It is often shown using a factor tree ('tree thingy'). V223

Eg. 40 as a product of prime factors



#### Using product of prime factors to find our HCF and LCM Example: Find the HCF and LCM of 24 and 60

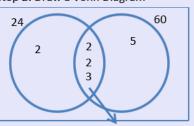
Step 1:

 $24 = 2 \times 2 \times 2 \times 2$  $60 = 2 \times 2 \times 3 \times 5$ 

Write each number as a product of prime factors

V224

### Step 2: Draw a Venn Diagram



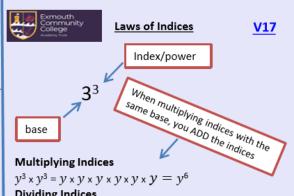
Place you into your u prime Venn d ne factors diagram

The HCF of 24 and 60 = 2 x 2 x 3 = 12 Multiply the common prime factors

The LCM of 24 and 60 =  $2 \times 2 \times 2 \times 3 \times 5 = 120$ 

Multiply all the prime factors

### Unit 1 Higher Number



#### **Dividing Indices**

V219

$$y^6 \div y^4 = \frac{y \times y \times y \times y \times y \times y}{y \times y \times y \times y} = y^2$$

When dividing indices with the same base, you SUBTRACT the indices

#### Power to another power (brackets)

$$(y^3)^2 = (y \times y \times y)^2$$
  
=  $y \times y \times y \times y \times y \times y = y^6$ 

#### Zero Indices

Anything to the power v<sup>0</sup>= 1 ← of 0 always equals 1

#### Negative Indices

## e.g. $5^{-2} = \frac{1}{5^2} = \frac{1}{25}$

### **Fractional Indices** $y^{\frac{2}{3}} = (\sqrt[3]{y})^2$ $8^{\frac{2}{3}} = (\sqrt[3]{8})^2 = 4$

#### V175

The negative sign means 'one over' the base number

The denominator of the fractional power becomes a root and the numerator becomes a power

V173

#### Standard Form

V300 V301 V302 V303

A number is in standard form when it is in the form A x  $10^n$ , where  $1 \le A < 10$ .

For example,  $63000 = 6.3 \times 10^4$ . This is in standard form because 6.3 is between 1 and 10, 63 x10<sup>4</sup> is not in standard form as 63 is not between 1 and 10.

#### Examples

With brackets just MULTIPLY your indices

 $45\ 000\ 000\ 000 = 4.5\ x\ 10^{10}$  $0.00000000000091 = 9.1 \times 10^{-12}$  large or very small numbers be written out easily. Standard form is used so

#### Surds

A surd is a number written exactly using square or cube roots.

For example  $\sqrt{3}$  and  $\sqrt{5}$  are surds.  $\sqrt{4}$ and  $\sqrt[3]{27}$  are not surds, because  $\sqrt{4} = 2$ and  $\sqrt[3]{27} = 3$ .

#### **Multiplying Surds**

$$\sqrt{m} \ge \sqrt{n} = \sqrt{m} \ge n = \sqrt{mn}$$
 E.g. 
$$\sqrt{3} \ge \sqrt{2} = \sqrt{3} \ge 2 = \sqrt{6}$$

#### **Dividing Surds**

$$\sqrt{m} \div \sqrt{n} = \sqrt{\frac{m}{n}}$$
E.g.  $\sqrt{12} \div \sqrt{3} = \sqrt{\frac{12}{3}} = \sqrt{4} = 2$ 

V308 V305 V307

## Unit 2 Higher Algebra

n<sup>th</sup> term:

Example: For the following sequence, the first term (n = 1) is 2.

The 2<sup>nd</sup> term (n = 2) is 5.

Positions (n numbers) → 1 2 3 4 5 6 ....n

TERMS → 2 5 8 11 14 17 .....

TERMS → 43 +3 +3 +3 +3

So we try rule: nth term = 3n. Testing the rule with n = 1 (1st term) gives 3, and we know 1st term should be 2, so we need an extra correction to rule of -1

So rule is:

$$t_n = 3n - 1$$

$$67^{\text{th}}$$
 term is  $t_{67} = 3 \times 67 - 1$   
= 200

Simplifying expressions: Gather together like terms, eg. 3e + 2 + 4e - 8 = 7e + 6

You can use this on any equation, whether the unknown is on one side, or both

You can do whatever to like, so long as you do the *same* to both sides:

$$4f + 3 = 2f + 23$$

4f + 3 = 2f + 23 [take 2f from each side] 2f + 3 = 23 [take 3 from each side]

2f = 20 [divide both sides by 2] f = 10

If you want to get rid of something negative, ADD that same amount to both sides

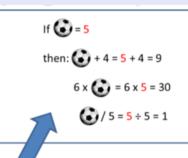
#### Substitution:

Just like in sport, substitution means swapping one thing for another – but instead of a fresh player for a tired player,

it's swapping a number for a letter.

When the expressions or formulae become a bit more complicated, it's *essential* that you follow the rules of BODMAS/BIDMAS:

e.g. If 
$$g = 10$$
:  $5 + 3g = 5 + 3 \times 10$   
=  $5 + 30$   
=  $35$ 



Rather than drawing a football every time, they'd just use the letter "f"

#### Classic exam question:

Bob works shifts in a café, where he get £6 a hour, plus a £5 travel bonus each day.



- (a) Write a formula to describe his pay P for a day's shift of h hours: P = 6h + 5
- (b) Use this formula to find his pay for a 7 hour shift:  $P = 6h + 5 = 6 \times 7 + 5 = 42 + 5 = £47$

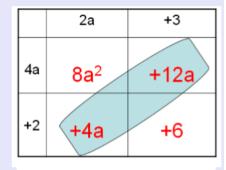
# **Factorising**

## expanding brackets

3 (2t + 5) 6t + 15



## Expanding (2a+3)(4a+2)



8a<sup>2</sup> + 16a + 6