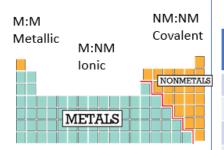

Metallic bonding

Metals LOSE ELECTRONS to form POSITIVE IONS

Delocalised electrons


GIANT structures of atoms in a REGULAR pattern

Delocalised electrons are free to move.

What is a metallic bond?

Sharing delocalised electrons - STRONG metallic bonds.

Which type of bonding is it?

Ionic bonding

Metals LOSE ELECTRONS to form POSITIVE IONS Non-metals GAIN ELECTRONS to form NEGATIVE IONS

Electrons transferred from metal to non-metal

$$Na \cdot + \stackrel{\times}{C} \begin{bmatrix} 1 \\ 2 \cdot 8 \cdot 1 \end{bmatrix} = \begin{bmatrix} Na \end{bmatrix}^{+} \begin{bmatrix} \stackrel{\times}{C} \begin{bmatrix} 1 \\ 2 \cdot 8 \cdot 1 \end{bmatrix} \end{bmatrix}$$
(2,8,1) (2,8,7) (2,8,8)

Ions have electronic structure of a noble gas

What is an ionic bond? STRONG electrostatic force of attraction between oppositely charged ions

How do we quickly work out the charges on ions?

Group	Electrons in outer shell	Charge on ion
1	1	1+
2	2	2+
6	6	2-
7	7	1-

C3 Structure and Bonding

Covalent **Bonding**

Two non-metals will SHARE pairs of electrons

STRONG bond formed.

Small molecules

A small group of atoms sharing electrons

sharing electrons

Giant Structures

Many atoms


poly(ethene)

Limitations of these models

Model	Limitations
Dot and cross	Looks like electrons aren't identical Electrons look like they are in fixed positions
H-N-H Displayed formula	Doesn't show true shape of the molecule
🚣 Ball and stick	Can attempt to show 3D shape but doesn't show electrons

Hydrocarbons

Crude Oil is made from the remains of living sea creatures decayed in mud millions of years ago

It is a FINITE resource

It is made of a mixture of Hydrocarbons.

Hydrocarbons are made of Hydrogen and Carbon only.

The main hydrocarbons in Crude Oil are alkanes

Alkane	Molecular formula	Structural formula
Methane	CH4	H — C — H
Ethane	C ₂ H ₆	H — H H H H H H H H H
Propane	C ₃ H ₆	H-C-C-C-H
Butane	C.H.o	H H H H H H H H H H H H H H H H H H H

The general formula for an alkane is -

 C_nH_{2n+2}

Fractional Distillation

How do we separate the

mixture of hydrocarbons

to use them?

Works by evaporation

and then condensation.

 Heat the crude oil to evaporate it.

2. The gases rise up the

column.
3. The different fractions

condense at different

temperatures.

Smaller molecules

burn most easily

v Increase

Crude Oi / Fuels K O

Combustion

Combustion (burning) is a reaction with oxygen

A reaction with oxygen is called 'oxidation'

When hydrocarbons burn a lot of **energy** is released.

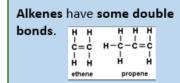
Complete combustion of hydrocarbons the only products are carbon dioxide and water

Complete combustion only happens if there is plenty of oxygen

General equation

hydrocarbon + oxygen → carbon dioxide + water

Complete combustion of propane

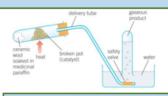

propane + oxygen \rightarrow carbon dioxide + water

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

Cracking

The larger molecules from fractional distillation are less useful. We can break them down into smaller, more useful molecules.

Cracking produces a mixture of alkanes and alkenes.



They turn bromine water colourless.

They are used to make polymers.

The apparatus for cracking

Catalytic cracking – catalyst and 500°C

Steam cracking – steam and 850°C