Variation and Evolution Variation and evolution L114-124 Biology / Inheritance

 $\dot{\vdash}$

Year

The

Over time this results in

the formation of new

Species of all living things have evolved from simple life forms that first developed 3 billion

Through natural selection of variants (genotypes) that give rise to phenotypes best suited to their faster. This allows for variants to pass on their genotype to the next generation.

Classification of living organisms Evolutionary trees are a method used by scientists to show how organisms are related

Use current classification data for living organisms and fossil data for

Choosing characteristics

Desired characteristics are chosen for usefulness or appearance

Disease resistance in food crops.

Animals which produce more meat or milk.

dogs with a gentle nature. Large or

flowers.

Domestic

Concern: effect of GMO on wild populations of flowers and insects.

particularly prone to disease or inherited defects e.g. British Bulldogs have

'inbreeding' where some breeds are

breathing difficulties

Selective breeding can lead to

Genes from the chromosomes of humans or other organisms can be 'cut out' and transferred to the cells of other organisms.

Genetically modified crops (GMO)

organisms

more resistant to Crops that insect have attack or aenes from herbicides. other

To increase the yield of the crop.

To become

theory of evolution by natural selection.

A change in the inherited

characteristics of a population over

time through the process of natural

selection.

Mammary Cells

Direct Current Pulse

years ago.

environment or environmental change e.g. stronger,

If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have formed two new species.

Evolution

AQA GCSE

INHERITANCE

VARIATION

AND

EVOLUTION

PART 3

extinct organisms

Humans have been doing this for thousands of years since they first bred food from crops and domesticated animals.

The process by which humans breed plants/animals for particular genetic characteristics

> Selective breeding

Genetic engineering

Modern medical is exploring the possibility of GM to over come inherited disorders e.g. cystic fibrosis

Choosing parents with the desired characteristics from a mixed population

Selective breeding

Chosen parents are bred together.

From the offspring those with desired characteristics are bred together.

Repeat over several generations until all the offspring show the desired characteristics.

Concern: effect of GMO on human health not fully explored

culture

- Adult cell cloning 1. Nucleus is removed from an unfertilised egg.
- 2. Nucleus from body cell is inserted into egg cell.
- 3. An electric shock stimulates the egg to divide into an embryo
- 4. Embryo cells are genetically identical to adult cells.
- 5. When embryo has developed into ball of cells it is inserted into host womb.

Cloning

(Biology

only)

Small groups of cells to grow new plants. Important Tissue for preservation of rare plants and commercially in nurseries.

Cloning techniques in plants/animals

Part of a plant is cut off and Cuttings grown into full plant.

Embryo transplants

Splitting apart cells from animals embryo before they become specialised. New clone embryos are inserted into womb of adult female.

Concern: some people have ethical objections to adult cell cloning e.g. welfare of the animals.

- 1. Enzymes are used to isolate the required gene.
- 2. Gene is inserted into a vector bacterial plasmid or virus.
- 3. Vector inserts genes into the required cells.
- plants/animals/microbes at an early stage of development so they develop the required characteristics.

Genetic engineering process (HT only)

4. Genes are transferred to

Biology / Inheritance Variation and Evolution

 \vdash

 $\overline{\mathbf{H}}$

Year

Charles Darwin

Theory of evolution by natural selection.

Individual organisms within a particular species show a wide range of variation for a characteristic.

Individual most suited to the environment are more likely to breed successfully.

Characteristics enable individuals to survive are then passed on to the next generation.

Evidence from around the world, experimentation, geology, fossils, discussion with other scientists (Alfred Wallace) lead to:

Charles Darwin 'On the Origin of the Species' (1859)

Published the theory of evolution by natural selection

Slowly accepted; challenged creation theory (God), insufficient evidence at time. mechanism of inheritance not vet known.

Other theories e.g. Lamarckism are based on the idea that changes occur in an organism during its lifetime which can be inherited. We now know that in the vast majority of cases this cannot occur.

The full human classification

Classification of living organisms

Animalia Kingdom Carl Linnaeus classified Phylum Chordata Class Mammalia Order Primates Family Hominidae Homo Genus Species sapiens

Due to improvements in microscopes, and the understanding of biochemical processes, new models of classification were proposed.

Carl Woese

Theory of

evolution

(Biology

only)

3 domain based on chemical analysis.

Archaea (primitive bacteria), true bacteria, eukarvota.

Organisms are named by the binomial system of genus and species. Humans are Homo sapiens

Fossils and antibiotic resistance in bacteria provide evidence for evolution.

Mutations Antibiotic resistant produce antibiotic resistant strains which can spread

Resistant strains are not killed.

Strain survives and reproduces.

People have no immunity to strain and treatment is ineffective.

Extinction

species survive

Due to extreme geological events, disease, climate change, habitat destruction, hunting by humans.

Evolution is widely accepted. Evidence is now available as it has been shown that characteristics are passed on to offspring in genes.

When no members of a

Fossils tell scientists how much or how little different organisms have changed over time.

Developed since its proposal from information gathered by other scientists.

Speciation

(Biology only)

AQA GCSE INHERITANCE VARIATION AND

EVOLUTION PART 4

Evidence for

Published joint writings with Darwin in 1858.

Did much pioneering work on

speciation but more evidence

over time has lead to our

current understanding.

Worked worldwide gathering evidence.

Best know for work on warning colouration in animals and his theory of speciation.

The understanding of genetics (biology only)

Independently

proposed the

theory of

evolution by

natural

selection

Gregor

In the mid 19th century carried out breeding experiments on plants

Inheritance of each characteristic is determined by units that are passed on to descendants unchanged.

Fossils

'remains' of ancient organisms which are found in rocks

Parts of organism that have not decayed as necessary conditions are absent.

Parts of the organism replaced by minerals as they decay.

Preserved traces of organisms such as footprints, burrows and rootlet traces.

soft bodied and Early forms of life were soft bodied and few traces are left behind and have been destroyed by geological activity, cannot be certain about how life began gene theory being developed t until long after Mendel died. to g Led but

Allows biologists to understand the diversity of species on the planet.

Variation and evolution L114-124

Speciation

Due to isolation of a population of a species e.g. species are split across far apart islands.

Environmental conditions differ for populations e.g. types of food available, habitat.

Individuals in each population most suited to their environments are more likely to breed successfully.

Over long periods of time each population will have greater differences in their genotype.

If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have formed two new species.

Further understanding of genetics

Improving technology allowed new observations.

Late 19th century: behaviour of chromosomes in cell division.

Early 20th century: chromosomes and Mendel's 'units' behave in similar ways, 'units' now called genes must be located on chromosomes.

Mid 20th century: structure of DNA determined. Mechanism of gene function worked out.