

GCSE Required Practical -Chemistry 1 - Making a salt from a carbonate or oxide

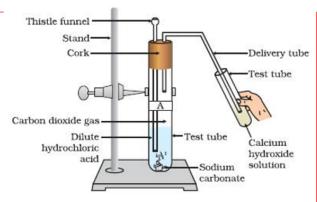
Salt: an ionic substance soluble: something that dissolves in water
Acid + metal carbonate → metal salt + water + carbon dioxide

insoluble: something that doesn't dissolve in water Acid + metal oxide → metal salt + water

What's the point of the practical?

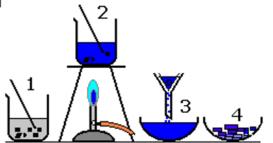
To find out how to make a pure, dry sample of a soluble salt from an insoluble carbonate or oxide.

Results


- Hydrochloric Acid makes Metal Chlorides
- Sulfuric Acid makes Metal Sulfates
- Nitric Acid makes Metal Nitrates

What may they ask us about?

- How do you get solid crystals from the salt solution (crystallize, evaporate the water)
- Why do we heat the solution
- What are the risks and safety precautions
- Why do we filter the solution
- How could we test the pH of the salt solution?
- Name the salt produced.


Example Apparatus Acid + Carbonate

Limewater (calcium hydroxide can be used To show Co₂ is produced

Acid + Metal Oxide

- Excess of metal oxide added
- Need to heat the solution to ensure as acid fully reacts with available metal oxide particles
- Then filter to remove Excess metal oxide

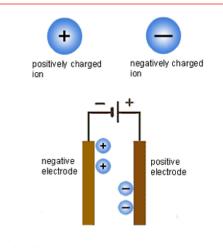
GCSE Required Practical - Chemistry 1 - Electrolysis

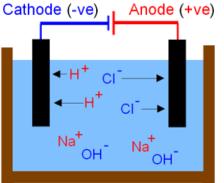
Electrolysis: when a salt solution is separated using electricity

What's the point of the practical?

To find out how different solutions behave when electrolysed

What may they ask us about?


- How could you test the gas that is produced (*hydrogen* = pop, chlorine = bleaches damp litmus paper).
- What happens when the lons get to the
 Electrode? (positive ions are reduced gain electrons.
 Negative ions are oxidised lose electrons).
- What would happen if you added universal indicator to the solution? (turns purple – hydroxide is produced – alkali).


Example Apparatus Molten compounds or less reactive salt solutions

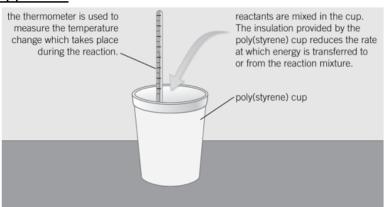
- Positive ions to negative electrode. Negative ions to positive electrode. Easy.

More reactive metal solutions e.g. Sodium Chloride solution (Brine)

- If the metal is more reactive than Hydrogen
- Hydrogen is produced at the Negative electrode (instead of the metal).
- Metal hydroxide is produced In the solution.

GCSE Required Practical -Chemistry 1 - Temperature changes in solutions

Exothermic reaction: releases energy (heat exits) Endothermic reaction: absorbs energy (gets cold)


What's the point of the practical?

To find out how different variables affect energy changes in solutions.

Results

- Displacement reactions are exothermic
- Neutralisation reactions are exothermic

Example Apparatus

- Displacement (e.g. Copper Sulfate + Iron → Iron Sulfate + Copper)
- Neutralisation

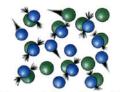
(e.g. Hydrochloric Acid + Sodium Hydroxide → Sodium Chloride + Water)

What may they ask us about?

- Why do you use a polystyrene cup / lid? (to reduce temperature loss to the surroundings makes results more accurate)
- Resolution and accuracy of measurements.
- Repeatability, calculating mean results, uncertainty etc

GCSE Required Practical - Chemistry 2 - How does concentration affect rate of reaction

Concentration: the amount of substance in a certain space


What's the point of the practical?

To find out how changes in concentration affect the rate of reaction.

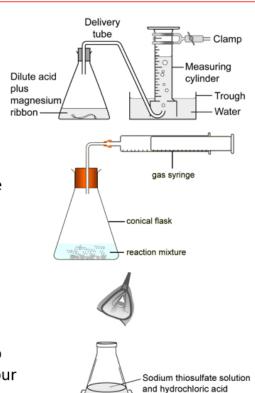
Results

The higher the concentration, the faster the reaction rate

Low concentration = Few collisions

High concentration = More collisions

What may they ask us about?


- What are the sources of errors that could lead to anomalous results? (not getting the bung in quickly enough, starting the timer exactly on time etc)
- Resolution and accuracy of measurements
- Control variables just change the concentration
 everything else has to stay the same (e.g. why must temperature be controlled)

Example Apparatus

Measuring cylinder
- used to measure gas
Production over time

Gas syringe - used to measure gas production over time

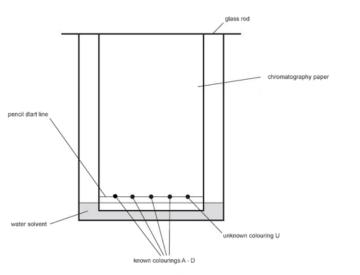
'Disappearing' cross – used to measure how quickly the colour changes

Cross on paper

GCSE Required Practical -Chemistry 2 -Identifying substances using chromatography

Chromatography: the process where a dissolved substance is separated by running a solvent along a material (e.g paper)

What's the point of the practical?


To separate substances and identify what they're made of

Results

 The substance moves up the paper (stationary phase). It is carried by the solvent (mobile phase). Each substance goes a certain distance

 $R_f = \frac{\text{distance moved by substance}}{\text{distance moved by solvent}}$

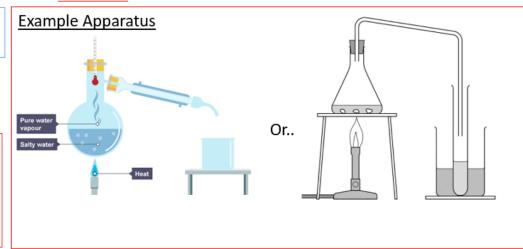
Example Apparatus

What may they ask us about?

- Why must the start line be drawn in pencil? (because pencil does not smudge/run in the solvent whereas pen would)
- Why does there need to be a lid? (to stop the solvent from evaporating)
- Measure the R_f value be accurate. Compare different substances with different R_f values. See what substances are contained in certain mixtures
- Sources of error, resolution or measurements etc

GCSE Required Practical -Chemistry 2 -Purifying and testing

Potable water = drinkable water


What's the point of the practical?

To analyse and purify water from different sources

Results

- Pure water boils at exactly 100°C and it's pH is 7
- Salt water contains sodium chloride
- Distillation = Heat the solution, the water evaporates, the salt stays in the container.

water

What may they ask us about?

- Explain how distillation works (water evaporates at lower temperature as it has a lower boiling point than the dissolved solids, then it condenses back into liquid as it cools down)
- Why is it not economical to do this on a large scale to make drinking water? (it costs too much to heat the water)
- Why may you not get all the water from the solution? (some does not evaporate, some liquid stays in the tube)

Chemistry required practicals

Topic	Title	What to do	Video link
C4.7	Use titration to	Use titration to find out	
	investigate	how much of an acid is	https://www.youtube.com/watch?v=8yHYoENtCEY
Triple	reacting	needed to completely	
only	volumes.	react with an alkali.	
C5.5 C5.6	Prepare a salt from an insoluble metal carbonate or oxide.	Prepare with the appropriate apparatus and techniques, a pure, dry sample of a soluble salt from an insoluble carbonate or oxide.	https://www.youtube.com/watch?v=qIOMlwBoe 4
C6.4	Investigate the electrolysis of a solution.	Investigate the electrolysis of different aqueous solutions using inert electrodes.	https://www.youtube.com/watch?v=tCHE 7QeRUc
C7.1	Investigating temperature changes.	Use appropriate apparatus to investigate the variables that affect energy changes in reactions involving at least one solution.	https://www.youtube.com/watch?v=tKxcQYZ2YH8
C8.4	Investigating the effect of concentration on rate of reaction.	Investigate how changes in concentration affect rates of reactions using a method involving measuring the volume of a gas produced and a method involving a change in colour or turbidity.	https://www.youtube.com/watch?v=WlitM81qGqE
C12.2	Calculate Rf values.	Use paper chromatography to find out the Rf values of the dyes found in different food colourings.	https://www.youtube.com/watch?v=pnTGNAfu6GE
C12.5 Triple only	Use chemical tests to identify unknown compounds.	Use a range of chemical tests to identify negative and positive ions in ionic compounds.	https://www.youtube.com/watch?v=2vCU9pVAyVE
C14.2	Purify and test water	Analyse and purify water from different sources, including pH, dissolved solids and distillation.	https://www.youtube.com/watch?v=Ea3PH q3kus