Year 7 Spring 1 Knowledge Organiser Unit 7 FRACTIONS AND PERCENTAGES

Key vocabulary

Fraction: Part of a whole e.g. <u>3</u> Numerator: How many parts we have $\frac{3}{4}$ Denominator: How many equal parts the whole has been divided into

Unit Fraction: Always has a numerator of 1 e.g. $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{17}$ Improper Fraction: Numerator is bigger than the denominator e.g. $\frac{4}{3}$ $\frac{7}{5}$ $\frac{10}{3}$ $\frac{9}{2}$ Mixed Numbers: Has a whole number and a fraction part e.g. $3\frac{1}{4}$ $7\frac{2}{3}$ $10\frac{14}{15}$ Equivalent Fractions: Fractions that use different numbers but have the same value e.g. $\frac{1}{2} = \frac{2}{4} = \frac{4}{8} = \frac{30}{60} = \frac{17}{34} = \frac{85}{170} = \frac{5}{10}$

Simplest Form: To get a fraction into its simplest form, divide the top and the bottom by any common factors e.g.

Key Skills

Adding and Subtracting Fractions: Must have the **<u>same</u>** denominator e.g.

HT3 T Percentages Fractions & Maths / Unit 5 T \sim Year

Exmouth Community College				
$\frac{11}{25} = \frac{44}{100} = 0.44 \text{[and } 44\%\text{]}$				
You can try a few: 1) <u>3</u> 2) <u>9</u> 3) <u>19</u> 5 20 50	8E.0 (E 24.0 (Z 9.0 (I 283W2NA			
Converting percentages into fractions: Start as a fraction over 100 e.g. 71% = <u>71</u> and 32% = <u>32</u> = <u>16</u> = <u>8</u> - Leave as simplest form 100 50 25 You can try a few: 1) 17% 2) 64%	S2/91 (2 001/21 (1 SAEWSNA			
Converting percentages to decimals: Divide by 100 i.e. two places down e.g. $14\% = 14 \div 100 = 0.14$ and $30\% = 30 \div 100 = 0.3$				
You can try a few: 1) 23% 2) 70%	7.0 (Z EZ.0 (T SAEWSNA			
Converting decimals to percentages: Multiply by 100 i.e. two places up e.g. 0.38 = 0.38 x 100 = 38% and 0.05 = 0.05 x 100 = 5% and 1.52 = 1.52 x 100 = 152% and 0.9 = 0.9 x 100 = 90%				
You can try a few: 1) 0.47 2) 0.08 3) 2.08 4) 0.1	ANSWERS 1) 47% 2) 8% 3) 208% 4) 10%			
Using a multiplier (decimal equivalent of the percentage) to work out percentages of amounts e.g. To find 85% of 140 = 0.85 x 140 = 119				
You can try a few: 1) 46% of 750 2) 3% of 8400	ator! 342 5) 525 (7 SHEWS T)			

Year 7 – Maths / Unit 5 Fractions & Percentages – HT3

Exmouth Community College

	Topic/Skill	Definition/Tips	Example
1.	Probability	The likelihood/chance of something happening	
2.	Probability Scale	Ac scale expressed as a number between 0 (impossible) and 1(certain) (0%-100%) Can be expressed as a fraction, decimal, percentage or in words (likely, unlikely, even chance etc)	impossible unlikely even chance likely certain 1-in-6 chance 4-in-5 chance
3.	Event and outcome	Event is an activity. Outcome is the actual result of an activity	Throw a 2 on a die is event – 1, 2, 3, 4,5 and 6 are outcomes
4.	Fair/bias	Fair is not giving priority to one happening. Bias is favouring one happening	A biased die would come up more often with certain number than others
5.	Equally likely	Equally likely outcomes have the same probability of happening	
6.	Mutually exclusive	Events are mutually exclusive if the cannot happen at the same time. Outcomes are exhaustive if they cover the entire range of possible outcomes. Probabilities of an exhaustive set of mutually exclusive events adds up to 1. The probability of something not happening is 1 minus the probability that it does happen	 Examples of mutually exclusive events: Turning left and right heads and tails on coin Example of non mutually exclusive events: King and hearts from a deck of cards because you can pick the king of hearts
7.	Probability Notation	P(A) refers to the probability that outcome of the event is A	P (red queen) refers to the probability of picking a red queen from a pack of cards
8.	Theoretical Probability	number of favourable outcomes total number of possible outcomes	Probability of rolling a 4 on a fair-sided die is $P(4) = \frac{1}{6}$
9.	Trials	Repeatedly doing the same thing. The probability is more accurate if there are many repetitions	Flipping a coin 50 times; more accurate if flipped 500 times
10.	Experimental probability = relative frequency	number of successful trials total number of trials	A coin is flipped 50 times ad lands on tails 29 times. The relative frequency of getting tails = $\frac{29}{50}$
11.	Expected outcomes	To find the number of expected outcomes, multiply the probability by the number of trails	The probability that a football team wins in 0.2. How many games would you expect them to win out of 40? $0.2 \times 40 = 8$ games
12.	Sample	A sample is a small selection of items from a population	A sample could selecting 10 students from a year group at school
13.	Sample size	The larger a sample size, the closer those probabilities will be to the true probability	A sample size of 100 gives a more reliable result that a sample size of 10

13. Sample space	A diagram showing the set of all possible outcomes of an experiment, in a table	* 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11 12
14. Frequency Tree	A diagram showing how information is categorised into various categories, and all possible outcomes. The lines connected the numbers are called branches . The numbers at the ends of branches tells us how often something happened (frequency)	Frequencies of boys/girls in sample wearing/not wearing glasses
15. Probability tree diagram	A branched tree diagram showing all outcomes and all probabilities . The probabilities along the branches are multiplied , while the probabilities going down are added (give a total of 1)	Probabilities of picking a black disc or white disc from a bag1st draw draw2nd draw (arrow 0 draw)Outcomes (B,B)Probability $3/_8 x 3/_8 = 9/_{64}$ $3/_8$ $3/_$

Try these

1. There are three 5p coins and three 10p coins in a bag. Amelita takes at random a coin from the bag

On the probability scale:

- a) Mark with the letter X the probability that Amelita takes a 5p coin
 - b) Mark with the letter Y the probability that Amelita takes a coin with a value of less than 5p
- 2. There are 5 red counters, 3 yellow counters and 1 blue counter in a bag. Harry takes at random a counter from the bag. Find the probability that the counter is a) red b) not blue c) red or blue d) pink
- 3. The probability that a spinner lands on blue is 0.4. Find the probability that it does not land on blue
- 4. During the past 30 days Josh has missed his school bus on 4 of those days. Estimate the probability that Josh will miss his school bus tomorrow.

Exmouth Community College

Topic/Skill	Definition/Tips	Example
Ratio	Ratio compares the size of one part to another part	3:1
Proportion	Proportion compares the size of the one part to the size of the whole Usually written as a fraction	In a class with 13 boys and 9 girls, the proportion of boys is $^{13}/_{22}$ and the proportion of girls is $^{9}/_{22}$
Simplifying ratios	Divide all parts of the ratio by the common factor	5:10 = 1:2 (divide both by 5) 14:21 = 2:3 (divide both by 7)
Connection between ratio and percentages	Add both parts of the ratio to get denominator . The multiply by 100 to get the percentage	3:2 ³ / ₅ X 100 = 60% ² / ₅ X 100 = 40%
Sharing in a ratio	 Add the total parts of the ratio Divide the amount to be shared by this value to find the value of one part Multiply this value by each part of the ratio Use only if you know the total 	Share £60 in the ratio of 3:2 3+2=5 60+5=12 3x12=36, 2x12=24 £36:£24
Proportional Reasoning	Comparing two things using multiplicative reasoning and applying this to a new situation. Identify one multiplicative link and use this to find missing quantities	30 minutes x2 60 pages ? minutes 150 pages x2
Unitary Method	Finding the value of a single unit and then finding the necessary value by multiplying the single unit value	3 cakes require 450g of sugar to make. Find how much sugar is needed to make 5 cakes. 3 cakes = 450g So 1 cake = 150g (÷ by 3) So 5 cakes = 750g (x by 5)
Ration already shared	Find what one part of the ratio is worth using the unitary method	Money was shared in the ration 3:2:5 between Ann, Bob and Cat. Given that Bob has £16, find out the total amount of money shared. $\pounds 16 = 2$ parts So $\pounds 8 = 1$ part $3 + 2 + 5 = 10$ parts, so $8 \times 10 = \pounds 80$
Best buys	Find the unit cost by dividing the price by the quantity . The lowest number is the best value.	8 cakes for £1.28 \rightarrow 16p each (÷ by 8) 13 cakes for £2.05 \rightarrow 15.8p each (÷ by 13) Pack of 13 cakes is best value

Exmouth Community College

Try these . . .

- 1. The total cost of 6 identical pends is £3
- a) Work out the cost of 1 of these pens.
- b) Work out the cost of 5 of these pens

2. Bill makes toy trains and cars. For every train he makes 3 cars. On Monday, he made 7 trains.

a) How many cars did he make?

On Tuesday, he made 27 cars.

b) How many trains did he make?

3. Write each of these ratios in its simplest form. a) 4:12

b) 24 : 32

4. Carlton takes 10 shots in practice for a basketball game. The scores on 6 of these shots. What proportion of his shots does he score? Give your answer as a percentage

5. There are 27 children in Mrs Rahkit's class. 12 of the children are boys. Write the ratio number of boys : number of girls Give your answer in the simplest form

6. Ahmad makes compost by mixing 0.5kg of sand with 2kg of peat.

a) Write the ratio of sand to peat. Give your answer in its simplest form.

b) What percentage of the compost is sand?

7. Ginny makes an orange drink by mixing 2 parts squash with 7 parts water. She has 400ml of squash. How much orange drink can she make?

8. £240 is split into the ration 5 : 3. what are the two amounts?