Displacement reactions and metal extraction

Reactivity depends on tendency to form metal ion

A and C are Cations (Positive Ions) B and D are Anions (Negative Ions)

HT: OILRIG

Oxidation Is Loss of electrons Reduction Is Gain of electrons

Metal + Oxygen → Metal Oxide

Metal + Water → Metal Hydroxide + hydrogen

Metal + acid → Metal salt + Hydrogen

Reactions of acids

Acid+metal → salt + hydrogen

Acid + insoluble base → salt + water

Magnesium is oxidised

 $Mg \rightarrow Mg^{2+} + 2e^{-}$

e.g. $2HCl + Mg \rightarrow MgCl_2 + H_2$

Hydrochloric Acid → Chlorides

Acid + alkali → salt + water

HT: OILRIG

HCL

Nitric Acid

HNO2

Sulphuric Acid HoSO4

C5 Chemical Changes

Neutralisation

Acids produce H⁺ ions Alkalis produce OH-ions

$$H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(I)}$$

HT: Strong and Weak acids

Concentration of hydrogen ions in mol/dm ³	рН
0.10	1.0
0.010	2.0
0.0010	3.0
0.00010	4.0

Strong and weak acids

The weak acid only partially invises in water. As you can see only two of the acid molecules have galt apart. The amount of hi lans is less so they galt of the acid will be higher.
• •

Evaporate off water

Electrolysis

..of molten:

Higher: At the anode 2Br · → Br₂+ 2e -2Br '- 2e ' → Br₂

..to extract aluminium:

Cyolite reduces the melting point

.. of solutions:

At the anode:

Halide (Gp7) Oxygen

At the cathode: Least reactive

RP: Preparation of

a dry sample of a

soluble salt

warm

→ Nitrates

→ Sulphates

History

Early periodic tables arranged in order of atomic weight

Some elements were in the wrong groups so didn't follow the pattern

Mendeleev left gaps for undiscovered elements.

- The elements were discovered that filled the gaps and proved him right.
- Stotopes were discovered which explained why order based on weight didn't work.

Modern periodic table - order of atomic (proton) number.

Elements with similar properties in columns (groups).

Elements in same group have the same number of electrons in their outer shell and so have similar chemical properties.

Metals vs Non-metals

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga V Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn

Metals: Few electrons in

outer shell so form

positive ions.

Hard, high melting and

boiling points.

Fr Ra =

Cs Ba inio Hf Tal Re Os Ir Pt Au Hg Tl Pb Bi Po At Ro

Non-metals: Many

electrons in outer shell so

form negative ions.

Low melting and boiling

points.

C2 Periodic Table

Group 1

Alkali Metals

Very reactive (due to single electron in outer shell)

- React with oxygen to form oxides
- React with water to form the hydroxide and hydrogen
- · React with chlorine to form chlorides

sodium + oxygen → sodium oxide O.(g) 2Na,O(s)

sodium hydroxide + 2H,O(l) → 2NaOH(aq)

> sodium chloride 2Na(s) + Cl,(g) 2NaCl(s)

Group 7

Halogens

Very reactive (due to having 7 electrons in outer shell)

- Non- metals
- · Exist in pairs as molecules (diatomic molecules)

- · React with metals to form white solid crystals
- React with non-metals to form small molecules

Group 0

Noble gases.

Unreactive (due to full outer shell)

Hydrocarbons

Crude Oil is made from the remains of living sea creatures decayed in mud millions of years ago

It is a FINITE resource

It is made of a mixture of Hydrocarbons.

Hydrocarbons are made of **Hydrogen** and Carbon only.

The main hydrocarbons in Crude Oil are alkanes

Alkane	Molecular formula	Structural formula
Methane	CH ₄	H-C-H
Ethane	C ₂ H ₆	H — C — C — H
Propane	C ₂ H ₆	H-C-C-C-H
Butane	C,H₁₀	H-C-C-C-C-H

The general formula for an alkane is -

 C_nH_{2n+2}

Fractional Distillation

How do we separate the

mixture of hydrocarbons

to use them?

Works by evaporation

and then condensation.

 Heat the crude oil to evaporate it.

2. The gases rise up the

3. The different fractions

column.

condense at different

temperatures.

Smaller molecules

burn most easily

Boiling points

Viscosity Increase

Crude Oil / Fuels K O

Combustion

Combustion (burning) is a reaction with **oxygen**

A reaction with oxygen is called 'oxidation'

When hydrocarbons burn a lot of **energy** is released.

Complete combustion of hydrocarbons the only products are carbon dioxide and water

Complete combustion only happens if there is plenty of oxygen

General equation

 $\textbf{hydrocarbon + oxygen} \rightarrow \textbf{carbon dioxide + water}$

Complete combustion of propane

propane + oxygen → carbon dioxide + water

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

Cracking

The larger molecules from fractional distillation are less useful. We can break them down into smaller, more useful molecules.

Cracking produces a mixture of alkanes and alkenes.

Alkenes have some double bonds. HHHHHHH

C=C H-C-C=C H H H H H H

They turn bromine water colourless.

They are used to make polymers.

The apparatus for cracking

Catalytic cracking – catalyst and 500°C

Steam cracking – steam and 850°C