

Quadratic Graphs V180 V181 V276c VCubic

Solving Simultaneous Equations

The lowest or highest point of the parabola, where the graph turns, is called the **turning point**. The turning point is either a minimum or a maximum point

The x-values where the graph intersects the x-axis are the solutions, or **roots** of the equation y=0

When a quadratic is written in completed square from y=a(x+b)2+c the coordinate of the turning point is (-b,c)

The quadratic equation $ax^2+bx+c=0$ is said to have no real roots if its graph does not cross the x-axis. If its graph just touches the x-axis, the equation has one repeated root.

On a coordinate grid, shade the region that satisfies the inequalities x < 5, $y \le 2x+4$, $y \le 1$ and y > -2

A **cubic** function is one whose highest power of x is x2. It is written in the form $y=ax^3+bx^2+cx+d$

Cubic Graphs

When a>0 the function looks like

When a < 0 the function looks like

- Calculate the solutions to the equation 'y=0' (points of intersection with the x-axis)
- Calculate the point at which the graph crosses the y-axis
- Find the coordinates of the turning point and whether it is a maximum or minimum

		2-			
	1	1	X.		
-3-	Ŧ	10	li	2	x
	1.	2	1		
	1 -	3-	1		
	-	4			
- 1	-	5			

