The Effect of Cooking on Food Knowledge Organiser | Key Terms | Description | Example | Use | |-----------------------|---|---|--| | Conduction | Transfers heat from a hot surface. | bacon, sausages, welsh
cakes, pancakes | dry fry, sautéing,
searing, griddling | | Convection | Transfers heat by the mass movement of heated particles into a cooler mass area. | chicken stew, boiling
potatoes, poached eggs,
deep fried fish | baking, roasting, deep
frying, boiling, braising
simmering | | Radiation – Infrared | Heat transferred using electromagnetic radiation – waves of heat or light strike the food. | meats cooked on a barbecue | infrared barbecues | | Radiation – Microwave | Electricity is
converted into
radio waves, called
microwaves, which
penetrate the food. | ready meals, microwave
meals, | heating leftovers,
defrosting, ready meals | ## We cook food for a variety of reasons: - · soften the food; - · improve or intensify flavor; - · make it look appealing; - · reduce 'bulk'; - · provide variety; - · enable ingredients to work together; - · keep warm/comfortable in winter; - · make food safe to eat; - · kill pathogenic bacteria; - · make food easier to chew and swallow; - · expend less energy in digestion. # The Effect of Cooking on Food Knowledge Organiser | | Method | Explanation | Advantage | Disadvantage | Example | |------------------|----------|---|--|--|---| | sp | Baking | Food is cooked in the oven using dry hot air. | More than one item can be cooked at once; good colour and texture; exterior is browned and adds flavour. | Specific cooking
times needed;
needs to be
baked at correct
temperature. | cakes,
puddings,
bread,
biscuits | | Dry Heat Methods | Roasting | Food is cooked using
dry air in the hot oven.
Basting with fat prevents
the food drying out. | Good flavour; crisp
texture; other products
can be cooked at the
same time. | Can be time-
consuming;
meat can get
chewy and
hard if cooked
at too high a
temperature. | joints of
meat | | | Grilling | Food is cooked by radiant
heat – grill is either
above or below the food. | Healthy – fat drains off
quickly. | Can easily burn if left too long. | sausages,
bacon,
cheese on
toast | | | Toasting | Dry radiant heat is applied
– brief exposure to heat
from an oven. | Toasting lowers Glycemic
Index; flavours can be
enhanced. | Needs monitoring to avoid burning. | bread, nuts,
seeds, spices | | | Method | Explanation | Advantage | Disadvantage | Example | |----------------|-------------------|--|--|--|---| | Frying Methods | Shallow
Frying | Food is cooked in a
shallow amount of hot
fat. | Quick; uses
minimal fat. | Will cook small
pieces of food
only; high safety
risk – splashes
can cause injury
and fire. | chicken,
steak,
sausages,
vegetables | | | Deep Frying | Food is plunged into
very hot fat. | Gives a golden
appearance and
crunch; very
quick. | High safety
risk due to
overheating
causing fire;
Very unhealthy
- foods absorb
fat. | chips, ,
chicken
pieces, fish | | | Stir Frying | Small pieces of
vegetable and meat
are cooked quickly in a
small amount of hot oil. | Quick cooking
method;
vegetables
remain crunchy. | Food needs
to be kept
moving to cook
through; heavy
preparation
needed before
cooking. | thin strips
of meat,
fish and
vegetables | | - | | | | | | | |---|-------------------|---------------------|---|---|--|--| | 4 | | Method | Explanation | Advantage | Disadvantage | Example | | | | Boiling | Food is cooked in boiling water. | Quick; Healthy; No
added fat; Good for
starchy foods. | Water soluble vitamins can be lost; food can get soft; not suitable for meat. | potatoes,
rice, pasta | | | | Simmering | Food is cooking in a
lightly bubbling stock,
water or juice. | Good for tender
pieces of food
Quick. | Water soluble
vitamins can
be lost; tender
foods can fall
apart. | meat, fish,
eggs, fruits,
vegetables | | | | Poaching | Food is cooked in
a small amount of
simmering liquid –
usually water or milk. | Food is cooked gently;
Quick; Healthy. | Water soluble
vitamins can
be lost; food
can fall apart. | fish, eggs,
meat | | 5 | po | Stewing | Food is cooked slowly in a liquid to develop flavours. | Tough meat is tenderised; Water soluble vitamins are absorbed into the sauce. | Needs
planning –
can take 2-3
hours. | stew,
casserole,
fish, meats,
pulses,
vegetables | | _ | Moist Heat Method | Braising | Meat has been seared and added to vegetables in a liquid to be cooked in the oven. | Meat is tenderised;
Good flavour; Water
soluble vitamins are
absorbed into the
sauce. | Must have a
well fitted lid;
can take 1-2
hours. | meat,
beans,
vegetables | | | Mois | Pressure
Cooking | Cooked under pressure
in a pressure cooker –
temperature of liquid
rises quickly from
100-120°C | Food cooks quickly;
Meat is tenderised;
Water soluble
vitamins are not
easily lost. | Easy to overcook the food. | meat,
vegetables,
soup, rice,
steamed
puddings | | | | Steaming | Food cooked in the
steam of boiling
water. | Healthy; Water
soluble vitamins are
not lost; Food easy to
digest. | Steamer needs
supervision
and filling
up; can take
longer than
boiling. | meat, fish,
vegetables | | | Blanching | Blanching | Food plunged into boiling water, then removed and put into cold water. | Healthy; Can prepare
vegetables for
freezing; Protects the
loss of colour. | Vitamins and
minerals can
be lost. | leafy
vegetables | | | | Sous Vide | Food is vacuum-
packed and heated in
water. | Flavour, aroma
and nutrients are
preserved. | Water bath
machine is
expensive;
food does not
brown. | meat, fish | # The Science of Food: Raising Agents Knowledge Organiser | Mechanical Raising Agents | Action | | |---------------------------|---|-----------------------------------| | Sieving | Traps air in between the flour particles. | cakes, pastry, batter | | Whisking | Whisking eggs will trap air and create a foam. | meringues, cakes, mousse, sponges | | Rubbing in | Rubbing fat into the flour adds air. | pastry, cakes | | Creaming | ming Mixing fat and sugar together traps air – cakes, sponges fat becomes pale and mixture is creamy. | | | Lamination | Air is trapped in each layer when it is rolled and folded. | flaky pastry, rough puff pastry | | Raising Agents | |-------------------------------| | Used in baking to give a rise | | and airy texture in the food. | | Chemical Raising Agents | Action | | |-------------------------|---|--| | Bicarbonate of soda | With moisture and heat, the bicarbonate creates bubbles of carbon dioxide which raises the food. This can have a soapy flavour. | chocolate cake, gingerbread | | Baking powder | A mixture of baking powder and cream of tartar works in the same way as bicarbonate of soda but with a reduced 'soapy' flavour. | Provides an 'all in one' method of baking when 'creaming' isn't done to add air. | | Self-raising flour | Plain flour with baking powder added removes the need to add a raising agent individually. | cake recipes | | Creaming | Mixing fat and sugar together traps air – fat becomes pale and mixture is creamy. | cakes, sponges | | Lamination | Air is trapped in each layer when it is rolled and folded. | flaky pastry, rough puff pastry | | Physical Raising Agents | | | |-------------------------|--|--| | Steam | Cooking a mixture with a lot of liquid in a very hot oven. Water turns to steam, which causes food to become solid and rise. | Yorkshire
pudding,
choux
pastry | # The Science of Food: Raising Agents Knowledge Organiser # **Heat Control** | Food can spoil if the correct temperature is not used. | |--| | If cake browns too quickly, reduce the heat by one
gas mark or 10°C. | | • Water boils at 100°C. | | Oil and fat can catch fire if they become too hot
(between 180 and 250°C). | The element should be red before grilling food. Food must be monitored to check it doesn't burn | Biological Raising Agent | Action | Uses | |--------------------------|--|----------------| | Yeast | Yeast is a living organism that can be bought fresh or dried. | doughs, breads | | | With moisture, food, oxygen and time, yeast will produce carbon dioxide bubbles. These cause bread dough to grow and rise. | | | | After kneading, dough will be left to prove to allow yeast to become activated. | | | | As dough rises, the gluten becomes stretchy, resulting in the dough being soft and springy. | | | | Some bakers knock back the dough and allow it to have a second rise for a finer texture | | # **Troubleshooting** but cooks through | Problem | Cause | Products This Can Affect | H | |---|--------------------------|---------------------------|----| | The mixture is stodgy, dry and stiff. | too much flour | cakes, breads, biscuits | | | The mixture lacks volume, is too runny or too soft. | too little flour | baked products and sauces | ╟ | | The product has a rubbery, greasy possibly crunchy texture. | too much fat | all food products | | | The product is dry and lack flavour. | too little fat | baked goods | ╟ | | Food is too brown and sweet. Texture is crunchy, crisp and brittle. | too much sugar | baked goods | | | The product lacks flavour and volume. | too little sugar | baked goods and desserts | ╟ | | The product tastes 'eggy' or has a dense texture. | too much egg | baked goods | | | The product has not set/has little coagulation. | too little egg | cakes, custard, quiche | lŀ | | The consistency is too runny for a batter or sauce. | too much liquid | baked goods and sauces | | | The mixture is very dry. | too little liquid | baked goods and sauces | ľ | | The cake surface is cracked, or the cake has risen over the tin. | too much raising agent | bread, biscuits, cake | | | The product hasn't risen at all and is very dense. | too little raising agent | bread, biscuits, cake | ľ | | | | | | # What Do Ingredients Do? | | Ingredient | Purpose | |---|---------------|---| | | Flour | provides bulk and volume; | | | | thickens liquids (gelatinisation). | | I | Fat | adds flavour, colour and moisture; | | ı | | • traps air. | | | Sugar | • adds flavour, colour and texture. | | | Eggs | • adds flavour, colour and air; | | | | helps set the liquid (coagulation). | | | Baking powder | produces carbon dioxide bubbles, resulting in
cakes being able to rise. | | | Yeast | produces carbon dioxide bubbles, resulting in
bread dough being able to rise. | # The Effect of Heat on Food Knowledge Organiser | Key Term | Explanation | |----------------|--| | denature | Altering protein structure or properties through heat, enzyme or chemical. | | coagulate | Change of protein from liquid to solid (irreversible). | | foams | Mousse, whipped cream, cappuccino foam. | | gluten | The protein found in wheat flour. | | caramelisation | Browning of sugar and changing of its flavour when heated. | | dextrinisation | Starch breaks down into dextrin in dry heat. | | gelatinisation | Starch swells and thickens. | | plasticity | Ability to be shaped. | #### Heat Effects on Proteins #### Gluten When water is mixed with flour, it forms a dough. As the dough is kneaded, it wakes up the gluten which becomes stretchy and strong. When it reaches a high temperature, it coagulates whilst keeping the dough stretched. This forms a well risen bread with a light airy texture. ### Foams Foams are formed when air is trapped inside the liquid. If air is then allowed to coagulate (whisking egg whites), it will form a foam. Over-whisking will allow air to escape and foam will collapse. #### Heat Effects on Proteins During cooking, protein denatures and coagulates. Heat causes loss of moisture, shrinkage and the product to become firm. Most proteins coagulate between 71-85°C. Examples of protein reacting with heat: - · egg whites changing from clear liquid to solid; - · meat fibres becoming firm; - · wheat proteins in bread (gluten) changing during baking. #### Denature This is when proteins unravel and their chemical bonds break down. Ways in which proteins can be denatured: - physical whisking, beating and kneading; - · changing their temperature heating, freezing; - adding chemicals acids, lemon juice and marinades. # Coagulate This means water becomes trapped in between the protein molecules which have been broken down. Coagulation happens when proteins are denatured and changes appearance and texture of food. ### The Effect of Heat on Food Knowledge Organiser ### Heat Effects on Carbohydrates #### Gelatinisation The change in starch is called gelatinisation. When starch and liquid are heated together, starch granules absorb water to soften and swell. This occurs at 66°C and above. The thickness of a starch-based sauce depends on the ingredient ratio. It must be stirred continuously to prevent lumps forming. When cooled, the liquid solidifies, e.g. lemon pie filling. #### Dextrinisation This is a chemical change to the starch molecule caused by the breakdown of sugars. It gives food a browner colour, crispier texture and different taste. The longer food is cooked, the more starch is converted into dextrin, resulting in a darker and crispier food. #### Caramelisation As sugar is heated, it first turns runny and very sweet, followed by becoming a caramel and sticky. As it cools, it solidifies into a solid candy. Most heat methods cannot get the sugar at a high enough temperature, therefore it is caramelised through the dry heat method. ### Heat Effects on Fats - Plasticity Fat cannot evaporate; it softens and liquefies when heated. However, different fats melt at different temperatures, meaning a variety of fats are used for different processes. The more plasticity a fat has, the easier it is to spread. Unsaturated fats tend to be softer than saturated fats and therefore have more plasticity. The plasticity of fat has many uses: - · decorating cakes with buttercream; - · rubbing fat into flour to make pastry; - · spreading butter on toast; - · cream cheese on crackers. ### Heat Effects on Water - Evaporation - · Some foods are made up of almost entirely water. - As these foods are heated, the molecules move faster until the water turns into steam and evaporates. - When too much water evaporates from food, it causes it to become dry.