Displacement reactions and metal extraction

Reactivity depends on tendency to form metal ion

A and C are Cations (Positive Ions) B and D are Anions (Negative Ions) Double Displacement Reaction

HT: OILRIG

Oxidation Is Loss of electrons Reduction Is Gain of electrons

Metal + Oxygen → Metal Oxide

Metal + Water → Metal Hydroxide + hydrogen

Metal + acid → Metal salt + Hydrogen

Reactions of acids

Acid+metal → salt + hydrogen

Acid + insoluble base → salt + water

Magnesium is oxidised

 $Mg \rightarrow Mg^{2+} + 2e^{-}$

e.g. $2HCl + Mg \rightarrow MgCl_2 + H_2$

Hydrochloric Acid → Chlorides

RP: Preparation of

a dry sample of a

soluble salt

→ Nitrates

→ Sulphates

warm

Acid + alkali → salt + water

HT: OILRIG

HCL

Nitric Acid

HNO2

Sulphuric Acid HoSO4

Choose correct acid

Add base to excess

C5 Chemical Changes

Neutralisation

Acids produce H⁺ ions Alkalis produce OH-ions

$$H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_{2}O_{(I)}$$

HT: Strong and Weak acids

Concentration of hydrogen ions in mol/dm ³	pH
0.10	1.0
0.010	2.0
0.0010	3.0
0.00010	4.0

Strong and weak acid:

Evaporate off water

Electrolysis

..of molten:

Higher: At the anode 2Br · → Br₂+ 2e -2Br '- 2e ' → Br₂

..to extract aluminium:

Cyolite reduces the melting point

.. of solutions:

At the anode:

Halide (Gp7) Oxygen

At the cathode: Least reactive

Year

Measuring Rate

To measure the rate of a reaction you can:

- Measure how fast the reactants are used up
- Measure how fast the products are made

e.g. Measure mass lost due to gas formed

e.g. Measure volume of gas made

Rate = volume of gas ÷ time

cm³/s

e.g. Measure time for insoluble product to form

Collision theory

C8 Rates and Equilibrium

For a reaction to happen reactants must: collide with enough energy (activation energy)

A successful collision is one that leads to a reaction

So to increase the rate of a reaction you must either

- Increase the frequency of collisions
- Increase the energy of the collisions
- Decrease the energy needed for a collision to be successful

Factors affecting rate

Concentration and Pressure

More particles in the same space. More frequent collisions

Surface area

Temperature

Particles move faster.
So they collide more frequently.
Particles collide with more energy.
So more of the collisions are successful.

Catalysts

Lower the energy
needed for
successful collisions.
(Activation energy)
Not used up.
Biological catalysts
are called enzymes

Reversible reactions

Can go in both directions.

$$A + B \rightleftharpoons C + D$$

If a reaction is exothermic in one direction it is endothermic in the other direction.

endothermic (in forward reaction)

In a closed system (where nothing can get in or out) an equilibrium is reached where the rate of reaction is the same in both directions.

At equilibrium:

- Rate of forward reaction = rate of reverse reaction.
- Mount of products and reactants don't change.

